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Fig. 1. Streamlines from a potential flow simulation around marine life of vastly different scales, computed using our Monte Carlo walk on stars solver
for spatial derivatives. Unlike traditional solvers, our method can compute flow gradients at arbitrary resolutions for streamline tracing in local regions of
interest-whether around a single fin (a), multiple dolphins (b), or a full blue whale (c)-without requiring a background grid or a volumetric mesh adapted to
the boundary geometry. Compared to prior walk on stars estimators (bottom right), our method achieves significantly lower error at equal computation time.

Monte Carlo methods based on the walk on spheres (WoS) algorithm offer
a parallel, progressive, and output-sensitive approach for solving partial
differential equations (PDEs) in complex geometric domains. Building on
this foundation, the walk on stars (WoSt) method generalizes WoS to sup-
port mixed Dirichlet, Neumann, and Robin boundary conditions. However,
accurately computing spatial derivatives of PDE solutions remains a major
challenge: existing methods exhibit high variance and bias near the domain
boundary, especially in Neumann-dominated problems. We address this
limitation with a new extension of WoSt specifically designed for deriva-
tive estimation. Our method reformulates the boundary integral equation
(BIE) for Poisson PDEs by directly leveraging the harmonicity of spatial
derivatives. Combined with a tailored random-walk sampling scheme and
an unbiased early termination strategy, we achieve significantly improved
accuracy in derivative estimates near the Neumann boundary. We further
demonstrate the effectiveness of our approach across various tasks, includ-
ing recovering the non-unique solution to a pure Neumann problem with
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reduced bias and variance, constructing divergence-free vector fields, and
optimizing parametrically defined boundaries under PDE constraints.
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1 INTRODUCTION

Recent years have seen significant advances in Monte Carlo solvers
for partial differential equations within the computer graphics com-
munity, particularly those built on Muller’s walk on spheres (WoS)
algorithm [Muller 1956]. WoS offers a compelling alternative to grid-
based methods for solving fundamental PDEs such as the Laplace
equation, especially in geometrically complex domains [Sawhney
and Crane 2020]. Much like Monte Carlo path tracing [Pharr et al.
2023], WoS-based solvers embrace randomness to gain key numeri-
cal advantages such as output-sensitive computation, natural paral-
lelism, and robustness to complex geometry, all without requiring
background grids or the inversion of large linear systems.

Yet a significant limitation remains: current Monte Carlo PDE
solvers are not well-equipped to estimate spatial derivatives of so-
lutions. Gradients are essential for analyzing how solutions vary
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across space, with applications in computing heat flux, voltage and
pressure drops [Sawhney et al. 2023; Bati et al. 2023; Miller et al.
2024b], as well as performing gradient-based optimization of shapes
and materials [Yu et al. 2024; Miller et al. 2024a; Yilmazer et al. 2024].
Unfortunately, derivative estimates are typically much noisier than
solution estimates, especially near boundaries, because the estima-
tor involves a singular kernel. This issue is exacerbated in boundary
value problems (BVPs) dominated by Neumann conditions, where
estimation requires evaluating high-dimensional integrals via long
random walks that repeatedly reflect off the Neumann boundary
and can only terminate on the Dirichlet boundary (Figure 2).

To address these challenges, we extend the walk on stars algo-
rithm [Sawhney et al. 2023; Miller et al. 2024b]-a generalization of
WoS for solving Poisson equations with mixed Dirichlet, Neumann,
and Robin boundary conditions-to enable more robust spatial deriv-
ative estimation. Our method achieves significantly reduced error
compared to existing WoSt-based derivative estimators. Specifically,
the estimators we develop (Section 4):

e maintain bounded variance both near the boundary and within
the domain by carefully handling singular kernels and incorpo-
rating control variates;

o reduce variance in Neumann-dominated problems through early,
unbiased termination of random walks, avoiding the longer tra-
jectories required to estimate the solution itself;

o preserve key strengths of Monte Carlo PDE solvers, such as output
sensitivity, and parallel and progressive computation.

Beyond improving derivative estimation, our method also unlocks
new capabilities that were previously out of reach for Monte Carlo
solvers, such as:

e A tractable estimator for the non-unique solution to pure Neu-
mann problems, offering substantially lower bias and variance
than prior approaches (Section 6.2).

o Gradient-based optimization of parametrically defined Neumann
boundaries (Section 6.4). Previous Monte Carlo methods have
largely avoided these problems, since computing parameter gradi-
ents requires estimating second-order spatial derivatives involv-
ing hypersingular kernels.

At the core of our method is a key mathematical insight: the
derivative of a harmonic function is itself harmonic. This property
enables us to formulate boundary integral equations for first- and
second-order spatial derivatives of Poisson equations, which we
estimate using the walk on stars framework.

While our method addresses key challenges in derivative estima-
tion, it assumes a smooth boundary and does not handle singular
behavior at sharp concave corners. Future work includes extend-
ing the approach to non-smooth geometries, incorporating Robin
boundary conditions, and generalizing beyond Poisson equations.

2 RELATED WORK

We provide an overview of the Monte Carlo PDE solvers directly
relevant to our method, with a focus on approaches for estimating
spatial derivatives. For a broader introduction to Monte Carlo solvers
for PDEs and a discussion of their numerical tradeoffs relative to
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Fig. 2. Walk on stars solves Poisson equations with mixed Dirichlet and
Neumann boundary conditions by taking independent random walks start-
ing from any given point in the domain (top). Walks reflect off the Neumann
boundary and terminate on the Dirichlet boundary. As a result, WoSt does
not terminate in pure Neumann problems (bottom left), and reduces to
Muller’s walk on spheres in pure Dirichlet problems (bottom right).

grid-based methods, we refer readers to resources by Sawhney et al.
[2025] and Sawhney [2024].

2.1 Monte Carlo Solvers for Partial Differential Equations

Since its introduction to the graphics community [Sawhney and
Crane 2020], the walk on spheres algorithm [Muller 1956] has been
extended far beyond its original application to Laplace equations
with Dirichlet boundary conditions. Recent work has broadened its
applicability to a wider class of linear elliptic equations [Sawhney
et al. 2022; De Lambilly et al. 2023; Sugimoto et al. 2024b; Miller
et al. 2025] and to more general boundary conditions [Sawhney
et al. 2023; Miller et al. 2024b; Sugimoto et al. 2023], along with the
development of several advanced sampling and variance reduction
strategies [Nabizadeh et al. 2021; Qi et al. 2022; Miller et al. 2023;
Bakbouk and Peers 2023; Li et al. 2023, 2024; Huang et al. 2025].
Together, these advancements are now enabling Monte Carlo PDE
solvers to be applied in diverse settings, including heat transfer
[Bati et al. 2023], geometry processing [Sawhney and Crane 2020;
de Goes and Desbrun 2024], fluid simulation [Rioux-Lavoie et al.
2022; Jain et al. 2024; Sugimoto et al. 2024a], differentiable rendering
[Wu et al. 2025], and inverse geometric optimization [Yu et al. 2024;
Miller et al. 2024a; Yilmazer et al. 2024].

Our approach to computing spatial derivatives builds on the walk
on stars method, which solves boundary value problems with arbi-
trary first-order linear boundary conditions [Sawhney et al. 2023;
Miller et al. 2024b]. Alternative methods such as walk on boundary
(WoB) [Sugimoto et al. 2023] also solve similar BVPs, but WoB ex-
hibits a significantly less favorable bias-variance tradeoff than WoSt
in non-convex domains for both solutions and derivatives [Miller
et al. 2024b, Figure 12 & Table 1]. Consequently, our method inherits
the advantages of WoSt over WoB for derivative estimation.



2.2 Derivative Estimation with Monte Carlo Solvers

Sawhney and Crane [2020, Section 3] introduced a mean-value
integral over a ball to evaluate the spatial gradient of a Poisson
equation, which can be estimated using both WoS and WoSt (Section
3.3). However, this formulation requires a non-zero ball radius and
thus cannot be applied directly at the domain boundary. Moreover,
the integral involves a singular kernel that diverges as the ball
radius shrinks to zero—e.g., when a random walk approaches the
boundary. This singularity persists even under gradient-specific
variance reduction techniques such as control variates and antithetic
sampling [Sawhney and Crane 2020; Rioux-Lavoie et al. 2022].

In Neumann-dominated BVPs, noise in WoSt-based solution and
gradient estimators is further amplified by the recursive sampling
of high-dimensional integrals arising from reflected random walks
(Figure 2). Boundary value caching (BVC) [Miller et al. 2023, 2024b]
seeks to amortize this cost by initiating walks only from the bound-
ary and reusing their results to estimate values in the interior. While
BVC reduces variance through correlated sampling away from the
boundary, its gradient estimates near the boundary exhibit even
greater noise than those of WoSt due to hypersingular kernels. In
some cases, the estimators may even fail to converge. Furthermore,
since BVC relies on WoSt for generating random walks, it inherits
the same challenges in Neumann dominated problems: namely, the
need to simulate long, high-variance walks that terminate only on
the Dirichlet boundary, or to apply ad hoc termination strategies
such as Tikhonov regularization for pure Neumann problems, which
introduce non-negligible bias [Sawhney et al. 2023, Section 6.4].

Our method mitigates the effects of singular kernels by modifying
the star-shaped regions used in WoSt to perform random walks. In
particular, as in the WoSt formulation for Robin boundary conditions
(Section 3.2), we introduce a reflectance function into our BIE for
first-order spatial derivatives (Equation 9). This function governs the
radius of each star-shaped region, allowing us to estimate derivatives
directly on the boundary or in the interior, while also ensuring
bounded variance. It also enables unbiased early termination of
walks via Russian roulette. Together, these modifications make our
method significantly more efficient at computing derivatives in
Neumann-dominated problems, including pure Neumann cases.

Finally, Yu et al. [2024] recently proposed using an off-centered
sphere at the boundary to mitigate kernel singularities, but their
method is limited to computing normal derivatives on the Dirich-
let boundary. In Section 6.4, we extend this approach to compute
second-order normal derivatives on the Neumann boundary, en-
abling optimization of parametrically defined geometry under Neu-
mann constraints. In contrast, prior work on differentiable Monte
Carlo PDE solvers [Yilmazer et al. 2022; Yu et al. 2024; Miller et al.
2024a] does not address Neumann boundary optimization, and in-
stead computes parameter derivatives either for material coefficients
inside the domain or Dirichlet conditions on the boundary.

3 BACKGROUND

We review the key concepts and techniques underlying our method
for computing spatial and parameter derivatives of Poisson PDEs,
namely boundary integral equations and Monte Carlo estimation
using the walk on stars algorithm.
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Notation. Let ¢(x) be a function defined on a domain Q c R3
with boundary 9Q. We use V¢ to denote its spatial gradient, given by
(0x ¢, 9y, 9,$). For any vector v € R3, the directional derivative of
¢ along v is denoted by 9y¢ := v - V¢p. On 9Q, we denote the normal
derivative by d,¢, and the tangential gradient by Vr¢. If the do-
main Q(r) is parameterized by a finite-dimensional vector 7 € RV,
we write ¢ for the parameter derivative of a -dependent function
¢(x, 1), i.e., the partial derivative with respect to the parameters s.

3.1 Boundary Integral Formulation For Poisson Equation
We consider PDEs of the form

Au = -—f on Q,
u = g on 9Qp, )
onu = h on QN,

where A is the negative-semidefinite Laplacian, and f : Q — Riis
the source term. The boundary 9Q is partitioned into a Dirichlet
part 0Qp with prescribed values g : 9Qp — R, and a Neumann part
dQN with prescribed normal derivatives h : 9QN — R. Assuming
9Q is smooth, the solution satisfies the boundary integral equation
[Costabel 1987; Hunter and Pullan 2001]

a(x) u(x) = /aA PC(x, z) u(z) — Gc(x, z) dpu(z) dz

N /A GC(x,y) f(y) dy @

for any point x € R®. Here A and C are arbitrary subsets of Q and R3
(respectively), and a(x) = 1if x € A, 1/2if x € A, and 0 otherwise.
Explicit expressions for the Green’s function G and Poisson kernel
PC are known in free-space (C = R%) and for balls (C = B(x, R) with
radius R) [Sawhney 2024, Appendix A]. To evaluate this BIE at a
point x, one must know u and d,u at all points z € dA. However
these quantities are often only partially specified by the boundary
conditions g on 9Qp and h on oQN.

Moreover, for a given direction v, one can show-via implicit
differentiation [Henrot and Pierre 2018, Section 5.5]-that the direc-
tional derivative d,u of Equation 1 also satisfies a Poisson equation.
As a consequence, dyu(x) admits a BIE similar in form to Equation
2 with unknowns d,u(z) and 32,u(z). We make use of such a BIE in
Section 4 to develop our method for estimating spatial derivatives.

3.2 Walk on Stars

The walk on stars method [Sawhney et al. 2023; Miller et al. 2024b]
solves a Poisson equation at any point xg € Q by performing in-
dependent random walks within the domain (Figure 2). Each walk
accumulates contributions from the source term f in the interior
and from the Neumann boundary data h when reflecting off o0Q.
Walks terminate upon reaching the Dirichlet boundary, defined as
being within an ¢ distance of 9Qp. At termination, they collect the
value g from the closest projected point X3 € 9Qp to the final walk
location x. (for k > 0).

3.2.1 Boundary Integral Formulation. Concretely, WoSt acts as a
Monte Carlo estimator for the boundary integral in Equation 2
by selecting A to be a star-shaped region St(x, R) relative to the
current random walk location x (inset). This region is constructed
by intersecting the domain Q with a ball B(x, R), where the radius
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R s chosen as the minimum distance from x to the closest silhouette
point on 0Qy;, and to the closest point on dQp. With this choice of
A, the BIE involves only a single unknown function u(z):

a(x) u(x) = ./85t PB(x,2) u(z)dz — / GB(x,z) h(z) dz

IStN

v [Py fw )
st 00N

Here, oSty denotes the portion
of the star-shaped boundary dSt
that lies on the Neumann bound-
ary, where the normal derivative
dnu(z) = h is prescribed. On the
spherical portion dStg = dB N JSt,
the Green’s function GP vanishes,
so dpu(z) does not contribute and
need not be evaluated.

()SlN

3.2.2  Monte Carlo Estimation. The integrals involving the Neu-
mann boundary data h and the source term f in Equation 3 contain
no unknowns and can be estimated directly. We refer readers to
Sawhney et al. [2023, Sections 4.5 & 4.6] for Monte Carlo strategies
used to evaluate these terms. For the remaining integral involving
the unknown function u(z), WoSt employs a single-sample Monte
Carlo estimator at each step x; € Q of the random walk:

pB (g, Xpey1) U(Xper1)
a(xi) pPStR) (s yq)

This estimator is recursive, as # appears on both sides of the equation.
The next walk location x4 is sampled from the probability density
function p?5t defined over aSt(x, R).

Conveniently, the Poisson kernel PB (xy, x1.,1) is the signed solid
angle subtended by dSt at x; [Sawhney et al. 2023, Equation 25].
Thus, similar to Monte Carlo path tracing, WoSt uses direction sam-
pling to determine xp,q: it casts a ray from x; in a direction uni-
formly sampled from the unit sphere and takes the first intersection
with oSt. If x. lies on the Neumann boundary oQ, the ray direction
is instead sampled from a hemisphere aligned with the inward nor-
mal, ensuring the walk remains inside the domain. Under this sam-
pling scheme, the ratio PB (xy, xkﬂ)/[a(xk)paSt(ka)] becomes 1
at each step, leaving u unchanged from the multiplicative identity.

©

u(xy) =

3.2.3  Pure Neumann conditions. In the absence of a Dirichlet bound-
ary, random walks under WoSt never terminate (Figure 2, bottom
left) and continue accumulating contributions from f and h in-
definitely. This behavior reflects the underlying structure of pure
Neumann problems, in which solutions are defined only up to an
additive constant. Terminating walks arbitrarily—such as by impos-
ing a maximum walk length-introduces bias that depends on the
chosen termination criterion.

Sawhney et al. [2023] propose addressing this issue via Tikhonov
regularization [Tikhonov 1998], which replaces the original Pois-
son equation with a screened version incorporating an adaptively
set absorption coefficient o. This modification allows walks to be
terminated stochastically within the domain, with the likelihood of
absorption increasing with o. While this approach reduces bias and
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variance relative to fixed-length truncation, selecting an appropri-
ate o remains challenging: larger values induce greater bias, while
smaller values lead to higher variance caused by longer walks. In
Section 6.2, we demonstrate that our method can be used to compute
the solution to pure Neumann problems up to an additive constant,
with significantly less error and walks of finite length.

3.24 The Reflectance Function. For partially absorbing and reflect-
ing Robin boundary conditions of the form d,u + pu = ¢ with y > 0,
Miller et al. [2024b] generalize the WoSt estimator in Equation 4 by
introducing a reflectance function,

1, on JStg,

GP (x, ©)
1= p(xgeer) %, on JStg,

P (X Xpey1) = {

where dStg denotes the portion of St on the Robin boundary 9Qg.
At each step k, the running estimate u is multiplied by the reflectance
p(xg, Xgy1). Of particular importance to our method, p informs
the selection of the radius R for the star-shaped region St, so that
reflectance remains within the range [0, 1]. This boundedness allows
p to also serve as a survival probability in a Russian roulette scheme,
enabling unbiased early termination of walks on dQg. In Section
4, we develop a modified WoSt estimator for spatial derivatives of
Equation 1, which similarly uses a reflectance function to terminate
walks on the Neumann boundary without introducing bias.

3.3 Estimating Spatial Derivatives with Walk on Stars

For a ball B(c, R) centered at a point ¢ € Q and contained within
the domain, Yu et al. [2024], building on Sawhney and Crane [2020];
Sawhney et al. [2022], use the following integral expression to eval-
uate the spatial gradient Vu of a Poisson equation at a point x:

Vu(x) = / VPR (x, 2)u(z) dz + / VGP (x,y)f (y) dy.
9B(c.R) B(c.R) ©)

This formulation is convenient because unknown values u(z) can be
estimated recursively using WoSt. However, sampling z uniformly
on the sphere dB does not properly account for the radial singularity
in the kernel VPB. This singularity becomes increasingly ill-behaved
as ¢ approaches the boundary and R reduces to 0, resulting in noisy
estimates near the boundary and incorrect estimates directly on it.

To address this issue, Sawhney and Crane [2020, Section 4] and
Rioux-Lavoie et al. [2022, Section 4] propose control and antithetic
variate strategies, respectively, for the case where the evaluation
point x coincides with the center ¢ in Equation 6. While these tech-
niques reduce noise near the boundary, the singularity in VP? per-
sists. We compare our method with this baseline in Section 6.1.

Sawhney and Crane [2020, Section 3] also provide an expression
for the Hessian of u, but it involves hypersingular kernels that result
in even higher variance. In Section 4.4, we introduce a more tractable
estimator for the second normal derivative % u.

3.4 PDE-Constrained Shape Optimization

Inverse problems involving the optimization of domain shape un-
der PDE constraints arise across science and engineering, from
airfoil and heat-sink design [Hicks and Henne 1977; Zhan et al.
2008] to structural lightweighting [Allaire et al. 2014]. While Monte



Carlo solvers have recently been applied to inverse problems involv-
ing Poisson-like PDEs [Yu et al. 2024; Miller et al. 2024a; Yilmazer
et al. 2024], prior work does not support parameterized Neumann
boundary conditions h(x, 7). This omission stems from the fact that
optimizing arbitrary parameters r requires solving a differential
version of Equation 1 [Henrot and Pierre 2018, Equation 5.79]:

Au = 0 on Q,
u = 0 on 9Qp, 7)
optl = (8nh - a,%u) Vp, + Vu-Vrv, on IO,

where u is the parameter derivative and V,, denotes the normal
velocity of the boundary. For simplicity, we assume that the source
term f and Dirichlet data g do not depend on 7; prior work addresses
these cases. Directly solving this PDE with WoSt is challenging
due to the nested dependence of # on first and second-order spatial
derivatives—specifically Vu and 93u~for which existing Monte Carlo
estimators can be inefficient. Our method addresses this challenge
by providing more reliable estimates of these derivative terms.

4 METHOD

In this section, we develop an alternative to the baseline WoSt esti-
mator for spatial derivatives described in Section 3.3, which does
not suffer from singular kernels and can be evaluated directly on the
domain boundary. We begin by deriving a boundary integral equa-
tion in Section 4.1 that is specifically tailored towards estimating
spatial derivatives. A key advantage of this formulation-detailed in
Section 4.2-is that unlike random walks for the solution estimator
which must always reflect off the Neumann boundary, walks for the
derivative estimator can be terminated early without introducing
bias. This leads to shorter walk lengths and, as we show in Section
6, significantly lower error compared to the baseline approach.

We focus initially on pure Neumann problems in Sections 4.1 and
4.2 to describe the core components of our estimator. We then extend
our method to mixed Dirichlet-Neumann problems in Section 4.3.
In Section 4.4 we introduce an estimator for the second normal
derivative of a Poisson equation, which we use for gradient-based
optimization of Neumann boundaries in Section 6.4. Section 5 then
provides implementation details for triangle meshes.

4.1 Boundary Integral Equation for Directional Derivatives

As discussed in Section 3.1, our method builds on the insight that just
like the solution u to a Poisson equation, its directional derivative
dpu along any direction v also satisfies a BIE over a star-shaped
region St. In particular, we have

a(x) dpu(x) = ./35t PB(x, z) dpu(z) dz — /

ISty

GB (x,2) 8,2wu(z) dz

+ /S GP0x0) 20f () d ®)

However, unlike the boundary integral in Equation 3, a key chal-
lenge in estimating Equation 8 is the presence of two unknown
functions: the directional derivative d,u(z) and the second-order
mixed derivative 92,u(z). Estimating both terms simultaneously
using WoSt would require a branching random walk, where new
walks would need to be spawned to estimate each nested derivative.
This would lead to significantly higher computational and memory
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costs per sample. Moreover, as the boundary conditions in Equation
1 are specified only for the solution u and its normal derivative, the
boundary constraints governing d,u and 9%, u are not well defined.

To overcome these issues, we first reformulate the boundary
integral above to follow a structure parallel to Equation 3, involving
only a single unknown function. In Appendix A, we show that this
transformation can be achieved by applying certain vector calculus
identities to the second-order derivative term 92,u, and performing
integration by parts on the second integral in Equation 8. Assuming
IQN is smooth, the resulting integral expression is

a(x) dpu(x) = ~/¢9-St PB(x, 2) (lp,(x, z)|9pu(z) + py(2)) dz

- / GB(x, z) ny(z) dz
ISty
¢ [ G auf o ay ©)
where the auxiliary functions p,, yi, and 1, are defined as
v if z € Sty
X,Z) = 10
pol:2) ur—u'n% if z € oSty (10)
if z € dStg
Ho(2) = . (11)
v-nh(z) ifz e dSty,
N0(2) = 0y h(z) —v - nH(2)h(z) — v - nf(z). (12)

Here, or denotes the tangential components of the input direction v
along the Neumann boundary with outward normal n, and H is the
boundary’s mean curvature. We term p,, the reflectance function,
for reasons detailed in Section 4.2. Unlike its scalar counterpart for
Robin boundary conditions (Section 3.2.4), p,, is vector-valued in
this setting. Accordingly, we use d,u(z) in Equation 9 as a shorthand
for the directional derivative of u evaluated along the direction of
P, (x,z), as defined by the two cases in Equation 10.

Monte Carlo Estimation. All terms in Equation 9 other than d,u
depend solely on known boundary data, geometric quantities, and
the input direction ». This structure enables the construction of a
non-branching WoSt estimator for the directional derivative. Other
spatial derivatives, such as the gradient, divergence and curl, can be
assembled by evaluating directional derivatives along appropriate
coordinate axes or field-aligned directions.

We can estimate the second and third integrals in Equation 9,
involving 1, and 9, f respectively, using the same Monte Carlo
strategies developed for the corresponding terms in the original
WoSt solution estimator (Section 3.2). We refer readers to Sawhney
et al. [2023, Sections 4.5 & 4.6] for details. For the first integral,
we follow the approach in Section 3.2.2 to formulate a recursive
single-sample estimator at each step x; € Q of a random walk:

P (xp, xpe1) (|Pu(xk)xk+1)|5p;(xk+1) +l—’u(xk+1))

a(xg) pPSteR) (xpy )

dou(xy) =

(13)

As before, the next walk location xj, is determined using direction
sampling. As a result, the running estimate on the right hand side
is updated using a multiplicative factor |p,| and a known additive
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ALGORITHM 1: 0WALKONSTARS(x, n, 0, €)

Input: Starting location x € Q of random walk, normal n at x (undefined if x ¢ dQy), direction o for derivative, -shell.
Output: Single-sample directional derivative estimate d,u(x) for a Poisson equation with pure Neumann boundary conditions.

1: R < COMPUTESTARREGIONRADIUS (X, v)

2: R « max(e, R)

3: d < SAMPLEUNITSPHERE()

4 if xedQnandn-d > 0thend « —-d

5: hit, p, n « INTERSECTNEUMANNBOUNDARY(x, d, R)
6: if nothit thenp < x + Rd

7: Tn «— NEUMANNBOUNDARYESTIMATE (x, v, R)

8: Ta,,f < SOURCEESTIMATE(x, p, d, R)

9

: py—hit? v-ov-n v

p—x .
(p-x)n *

10: if |p,| < SAMPLEUNIFORM(0, 1) then return i, (x, p, n, v) — f,, + Ta,,f

11: return OWALKONSTARS(p, n, p,/1p,l, €) + po(x, p, n, v) — T,, + Taﬂf

>Compute radius of star region St(x, R) containing Neumann boundary oQN (Sections 5.1-5.2)
>Ensure R > ¢ to prevent walk from stalling on concave part of 0QN [Sawhney et al. 2023, Figure 9]
>Sample a direction d uniformly on the unit sphere

>If x lies on 9QN, ensure d is sampled on hemisphere with axis —n

>Intersect ISty with ray x + R d, and get first hit

»>If there is no hit with dSty, update next walk location to point on dStp instead
>Estimate boundary contribution on dSty (second integral in Equation 9)
>Estimate source contribution in St (third integral in Equation 9)

>Compute reflectance (Equation 14)

term y,,. Importantly, the direction of each estimate evolves over the
course of the walk, as it is always aligned with the local direction
of p,. We provide pseudocode for the full directional derivative
estimator in Algorithm 1, which retains the same structure as the
WoSt algorithm for the solution [Miller et al. 2024b, Algorithm 1].

4.2 Terminating Walks on the Neumann Boundary

As described in Section 3.2.3, the original WoSt algorithm is ill-suited
for solving pure Neumann problems—whether for the solution or
its derivatives—because random walks continue indefinitely unless
artificially truncated. However, unlike the solution u, which is de-
fined only up to an additive constant, the directional derivative d,u
is uniquely determined. This distinction removes the ambiguity in-
herent to the solution and suggests that an estimator for d,u can, in
principle, be constructed without arbitrary termination. The vector-
valued function p,, in our derivative estimator (Equation 13) offers
such a mechanism, similar to how the scalar function p in Equation
5 facilitates walk termination for Robin boundary conditions.

In more detail, when the radius R of a star-shaped region St(x, R)
is chosen as the distance from x to the closest silhouette point on the
reflecting boundary, St may include boundary points for which the
reflectance functions become unbounded (Figure 3). For instance,
in both 2D and 3D, p,, has the explicit form

P e (14)
(z=x)-n

where n denotes the outward normal at the boundary point z € dSty.
The magnitude of this vector diverges as the denominator (z —x) - n
approaches zero, i.e, when the view direction from x is nearly
perpendicular to n. However, by selecting a smaller radius while still
ensuring that St remains star-shaped (i.e., every boundary point in
St remains visible from its center x), we can restrict the magnitude
of p, to lie within a desired range, such as [0, 1]. This mirrors the
strategy used by Miller et al. [2024b] for Robin problems, where the
scalar reflectance function p is likewise bounded and interpreted as
a reflection probability on dSty—hence the term “reflectance”

For derivative estimation, we select the smallest radius such that
the corresponding star-shaped region will exclude any boundary
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—lpyl €[0,1] —1py| £[0,1]

Xk Xk

Z Z
] ]
S S
WoSt for directional derivative

R selected s.t. | py,| € [0,1]

WoSt for solution
R = distance to closest silhouette

Fig. 3. Unlike the WoSt solution estimator, which sets the star-shaped
region radius R to the distance from the walk location xj to the closest
silhouette point on dQn (left), the derivative estimator chooses R so that
the reflectance magnitude |p,| remains within a prescribed range (right).

point where the reflectance exceeds a prescribed threshold pmax:
R=min{|[x - z|| : z € 0QN., |p,(x. 2)| = pmax} (15)

We assume pmax = 1 in Algorithm 1, and provide implementation
details for computing R when the boundary 0Q is represented by
a triangle mesh in Section 5.

Termination Using Russian Roulette. When |p,| < 1, we terminate
walks with probability 1 — |p,| at each step (line 10, Algorithm 1). If
a walk survives, we normalize the reflectance to unit length and con-
tinue estimating the directional derivative along p,/|p,|, without
scaling the estimate by |p,| (line 11). This Russian roulette scheme
guarantees finite walk lengths even in pure Neumann problems,
while avoiding both the bias of arbitrary truncation and the variance
from singular kernels.

4.3 Extension to Mixed Dirichlet-Neumann Conditions

While our focus has been on Neumann boundary conditions which
are more challenging for Monte Carlo PDE solvers, our derivative es-
timator also extends naturally to domains with Dirichlet conditions.

>Probabilistically terminate walk using Russian roulette

>Repeat from updated walk location (n is undefined if p ¢ 0QN)



Fig. 4. Following Yu et al. [2024], our method estimates the normal deriv-
ative dpu on the Dirichlet boundary dQp by launching a secondary walk,
shown in red, from an off-centered sphere tangent to the boundary (Section
4.3). We extend this approach in Section 4.4 to also estimate the second
normal derivative 92u on the Neumann boundary oQy.

One possible approach is to formulate a boundary integral equa-
tion analogous to Equation 9 for the directional derivative, where
the star-shaped region St may include portions of 9Qp as well. We
derive such an expression in Appendix B.

In practice, we adopt a simpler strategy more closely aligned with
the WoSt solution estimator: we restrict the radius of St so it does
not exceed the distance to dQp. Any walk that comes within an ¢
distance of the Dirichlet boundary is projected onto dQp, where the
tangential component of d,u is set to dy g, the directional derivative
of the Dirichlet data along the tangent vector vr. Since the normal
derivative d,u is not prescribed on 9Qp, we follow the strategy of
Yu et al. [2024, Section 5.2] and estimate it by launching a secondary
WoSt process from an off-centered sphere tangent to the boundary
(Figure 4). This construction enables the use of control variates
to mitigate kernel singularities on 9Qp, providing lower-variance
reconstruction of dyu from its tangential and normal components.

4.4 Higher Order Derivative Estimation

Certain applications, such as the gradient-based optimization of
Neumann boundaries (Section 3.4), require estimating higher-order
derivatives. In particular, computing the parameter derivative # in
Equation 7 involves evaluating the second normal derivative 9%u
and tangential derivative Vu - VrV;,, on the Neumann boundary.
While the latter can be estimated using our directional derivative
estimator (Equation 13), the former presents an additional challenge.
In this section, we focus specifically on estimating 821 on dQx.
We do not address other second-order derivatives, such as the full
Hessian of u, which are beyond the scope of this work. The basic
insight is that since the directional derivative d,u satisfies a Poisson
equation, its own normal derivative admits a boundary integral
representation similar to Equation 6. In particular, we have

af,u(x) = / P8 (x, 2) dpu(z) dz

IB(c,R) (16)

[ Gt aufw) d
B(c,R)
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\\\|\Pv| < Pmax _--
|

Fig. 5. Geometric construction for determining the radius of a star-shaped
region for a plane and triangle. Left: The reflectance vector p, lies in the
plane and defines a disk of radius r centered at the intersection point p,
such that [p,| < pmayx inside the disk. The star-shaped region radius R is
the distance from x to the disk boundary. Right: Three ways a triangle may
intersect the disk: (1) lies fully outside, (2) lies fully inside, and (3a,b) partially
overlaps. In cases (1) and (3), the triangle constrains the star-shaped radius.

where the ball B(c, R) is centered at ¢ € Q and is fully contained
within the domain. As illustrated in Figure 4, the ball is constructed
to be tangent to the Neumann boundary at the evaluation point
x, which lies on both 9Qy and B(c, R), with outward normal n.
This formulation allows us to estimate d2u by recursively applying
our directional derivative estimator to d,u(z) along the integration
boundary. Since the singular kernels 9.PB(x,2) and 9,GB(x,y) in
Equation 16 can lead to high variance near the evaluation point x,
we also provide a control variate strategy in Appendix D.3 for stable
and accurate estimation.

5 IMPLEMENTATION ON TRIANGLE MESHES

As discussed in Section 4.2, selecting an appropriate radius for star-
shaped regions is essential for bounding the magnitude of the re-
flectance at each step of a walk. However, closed-form expressions
for this radius are generally unavailable in domains with arbitrary
boundary geometry. In this section, we describe how to compute
star-shaped region radii on triangle meshes. We begin in Section 5.1
with the case of a single triangle, and generalize to full meshes in
Section 5.2, where we accelerate radius queries using a spatial hier-
archy. Then, in Section 5.3, we present a specialized edge sampling
strategy for computing the second integral in Equation 9, which
involves evaluating the directional derivative of known Neumann
data and local mean curvature.

5.1 Star-Shaped Region Selection For A Triangle

To compute the radius R of a star-shaped region St centered on x
when the Neumann boundary is defined by a single triangle, we first
consider the simpler case of an infinite plane. The reflectance vector
p,, from Equation 14 lies entirely within the plane, as its dot product
with the plane’s normal n yields zero. Geometrically, the magnitude
|p,| defines the radius r of a disk in the plane centered at the point
p (Figure 5, left), where a ray from x in direction v intersects the
plane. A short derivation shows that r satisfies

(p—x)n

o-n

17)

implying that any point z within this disk yields a reflectance magni-
tude below the threshold pmax. Outside the disk, reflectance values

7 < Pmax *
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exceed the threshold. Hence, for a plane, the radius R of St is given
by the minimum distance from x to the disk boundary.

For a triangle that spans only a subset of the plane, we restrict at-
tention to the portion of the disk that overlaps the triangle (Figure 5,
right). This intersection yields three distinct cases:

(1) No overlap: All points in the triangle produce reflectance values
above pmax. To exclude these points from St, we set R to the
minimum distance from x to the triangle.

(2) Full containment: All points in the triangle satisfy the re-
flectance constraint. Since the triangle does not place a restric-
tion on St, we set R = oo.

(3) Partial intersection: Only a portion of the triangle satisfies
the reflectance constraint. In this case, we compute R as the
minimum distance from x to the boundary of the intersection
between the triangle and the disk:

R=min{||x —z| : z2¢ A N O}. (18)

Practically, this involves evaluating the minimum distance to
the disk boundary, as well as to the intersection points between
the triangle’s edges and the disk boundary.

5.2 Star-Shaped Region Selection For Triangle Meshes

Computing the radius R by evaluating every triangle individually
and selecting the minimum is computationally expensive for large
meshes. To accelerate both star-shaped region selection and ray in-
tersection against the Neumann boundary (Algorithm 1, lines 1 & 5),
we adopt a spatialized normal cone hierarchy (SNCH) [Johnson and
Cohen 2001], which remains unchanged from prior WoSt estimators.
This structure augments a standard bounding volume hierarchy with
angular bounds, enabling efficient pruning based on both spatial
proximity and surface orientation. Specifically, each node in the
SNCH stores an axis-aligned
bounding box (AABB) along ql:e % ‘
with a normal cone, i.e., a cone point
that bounds all surface normals ... hCH node
of the triangles in the node (in- ﬂ\\ i
set). The cone’s axis is the av-
erage normal direction, and its \
half-angle captures the maxi- ' \
mum deviation from this axis.

normal cone

Traversal and Culling. To compute R at a given walk location x,
we traverse the SNCH in depth-first order, progressively refining a
conservative estimate of the radius. At each node, we construct a
view cone rooted at x, whose axis points to the node’s centroid and
whose half-angle tightly encloses the node’s AABB. Following the
closest silhouette point query procedure of Sawhney et al. [2023,
Section 5.1.2], we first check whether the view cone and normal
cone admit a pair of mutually orthogonal directions [Sawhney et al.
2023, Algorithm 4]. If so, the node may contain silhouette edges
and must be visited. If not, we compute a conservative upper bound
for the reflectance magnitude |p,| using the node’s spatial and
angular bounds, as described below. If this bound is smaller than
the threshold pmax or if the node lies entirely outside the current
best radius estimate, it is safely culled. For the surviving leaf nodes,
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we apply the triangle-level procedure from Section 5.1, potentially
tightening the global minimum. This traversal strategy substantially
reduces the number of reflectance evaluations and offers significant
speedups over brute-force linear traversal.

Upper Bound For Reflectance Magnitude. To conservatively bound
reflectance over an entire SNCH node, we analyze the squared
magnitude of Equation 14:

|pv(x, z)|2 =1-2ab+ az,
v-n z—-x (19)
where a=——, b=0v-d, d=—.
d-n [|lz = x]|
The dot products in a and b vary over angular intervals deter-
mined by the node’s normal cone and the view cone. Using in-
terval arithmetic, the intervals d - n € [cospin @, COSpmax @], v - n €
[cOSmin B, cOSmax fl, and v - d € [cOSmin ¥, COSmax y] yield conser-
vative bounds for a and b:

COSmin f COSmax f

, ., b € [cospin ¥> cOSmax 1] (20)
COSmax & COSmin &

Applying these expressions to Equation 19 gives an upper bound
on the squared reflectance:

2 .
|Pv|upper =1- 2n'nn(aminbmin) Aminbmax, @maxbmin amaxbmax)

+max(a®, , aZ,.). (21)

min’
2 . . .
If | pvlupper < p2.«, the node cannot influence the radius estimate

and is culled; otherwise, it must be visited.

5.3 Resolving Derivative Discontinuities

The function 1, (Equation 12) on the Neumann boundary involves
the surface derivative dy-h and the mean curvature H. Both be-
come singular along mesh edges where the surface normal changes
abruptly, yielding Dirac delta contributions supported only on edges.
(Note that H vanishes within each flat triangle.) Because these contri-
butions lie on sets of measure zero, standard Monte Carlo sampling
over triangles can fail to capture them, leading to biased directional
derivative estimates [Li et al. 2018].

Line Integral Formulation. To correct this bias, we augment the
surface integral f Sty GBUU in Equation 9 with an additional line in-
tegral over the set of Neumann boundary edges 8StI]fI inside
a star-shaped region St. This is done by mol-
lifying the geometry: each sharp edge is re-
placed by a narrow band of width ¢, across
which surface normals transition smoothly
and the function 7, becomes regular (inset).
In Appendix C, we show the contribution of
this band converges, in the limit ¢ — 0, to the
following line integral:

/ G? (x,2) [v t()hT(2) +v -t (2)h” (z)] dl,  (22)
IStE,

where z lies on an edge shared by triangles with normals n* and
n~. Letting e* and e~ be unit tangent vectors along opposite edge



directions, the corresponding in-plane edge normals are defined as

- n-
o & xn (23)

+  etxnt B
lle= xn||

" et xnt

The values h*(z) and h~ (z) denote the Neumann data from the two
adjacent triangles. Although z lies on a shared edge, this formulation
correctly accounts for discontinuities in both the surface geometry
and the boundary data.

Edge Sampling. Fortunately, sampling Equation 22 requires no
additional machinery beyond an SNCH-based traversal used in prior
WoSt estimators. We reuse the point sampling query of Sawhney
et al. [2023, Section 5.2] to efficiently identify Neumann boundary
edges within St, then uniformly sample a point z along one such
edge. In Appendix D.2, we also describe a control variate strategy
to mitigate singular behavior in the Green’s function GB(x, z) as a
sampled point z along an edge approaches the query location x.

Additional considerations. While sampling the above line integral
resolves singularities from 7, other sources of irregularity remain.
In particular, the directional derivative dpu may also exhibit limited
smoothness near sharp concave corners on 9Qy. We revisit this
issue in Section 6.5.

6 RESULTS

We implement our solver using Dr.Jit [Jakob et al. 2022] for parallel
execution of random walks on the GPU. For star-shaped region
selection, ray intersections, and distance and point sampling queries,
we use the spatialized normal cone hierarchy from the fcpw library
[Sawhney 2021]. The hierarchy is constructed on the CPU, while
traversal for all queries is performed on the GPU. All experiments
were run on a workstation with an NVIDIA RTX 4090 GPU.

We begin by validating our method on synthetic test problems
(Section 6.1). We then demonstrate new capabilities enabled by our
approach, including reconstructing the solution to pure Neumann
problems (Section 6.2), simulating divergence-free magnetic fields
(Section 6.3), and optimizing Neumann boundaries via parameter
derivative estimation (Section 6.4). Finally, Section 6.5 discusses the
unique challenges of computing derivatives in polyhedral domains.

6.1 Validation

We validate our method on two synthetic test cases, shown in Figures
6 and 7, using domains defined by 2D polylines (first row) and 3D
triangle meshes (second row), respectively. For the 3D model, we
restrict evaluation to a 2D slice through the volume. In each case, we
prescribe an analytical function # within the domain and compute
the corresponding source term and boundary conditions to define a
Poisson problem:

Au = Au on Q,
u = 4 on 0Qp, (24)
on = Onll on dQN.

We evaluate the accuracy of our method by comparing its estimates
of the directional derivative dyu to the exact value dyii. We also
compare our results to those produced by the baseline gradient
estimator described in Section 3.3.
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Fig. 6. Estimation of directional derivatives for an analytically defined pure
Neumann problem. The baseline WoSt estimator (Section 3.3) in column (b)
exhibits high variance and bias, especially near the boundary, with walks
truncated after a fixed number of steps (here, 128). In contrast, using our
method with the reflectance threshold pmax = 1 in column (c) yields more
accurate results for the same compute budget. Larger thresholds values,
such as pmax = 100 in column (d), lead to higher noise.

6.1.1 Derivative Estimation For Pure Neumann Problems. As dis-
cussed in Section 3.2.3, the standard WoSt estimator faces funda-
mental challenges in pure Neumann settings. Walks lack natural
termination criteria, and practical fixes such as truncating walks
after a fixed number of steps or applying Tikhonov regularization
introduce bias. In addition, the baseline gradient estimator differen-
tiates a kernel that is singular on the boundary (Equation 6), leading
to elevated variance and instability in nearby regions (Figure 6(b)).

Our method avoids these pitfalls by reformulating the directional
derivative as a boundary integral over a star-shaped region weighted
by a reflectance function (Equation 9). This eliminates the need to
evaluate singular kernels and enables unbiased walk termination
via Russian roulette (Section 4.2). As a result, our estimator achieves
lower variance than the baseline throughout the domain, including
near the boundary, and delivers higher accuracy at comparable cost.
Figure 6(d) shows that setting a reflectance threshold pmax > 1,
corresponding to a larger star-shaped radius, produces higher noise.

6.1.2  Derivative Estimation for Mixed Dirichlet—-Neumann Condi-
tions. For problems with mixed boundary conditions, we follow the
approach described in Section 4.3: when a random walk enters the
e-shell around a Dirichlet boundary, we launch a secondary walk to
estimate the normal derivative on 9Qp, following Yu et al. [2024].

Although the baseline estimator can terminate walks upon reach-
ing dQp, it still exhibits high variance near both boundary types.
This effect is especially pronounced near Neumann boundaries,
where walks tend to be significantly longer. The resulting dispar-
ity in walk lengths leads to uneven variance across the domain, as
shown in Figure 7. Our method outperforms the baseline, achieving
lower variance in equal-time.
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(a) Baseline

(b) Ours

Dirichlet

Dirichlet B Neumann

Fig. 7. Directional derivative estimation under mixed boundary conditions.
Walks terminate upon reaching the Dirichlet boundary, resulting in shorter
trajectories than in the pure Neumann case. Nonetheless, the baseline esti-
mator remains inefficient near the Neumann boundary, where our method
yields lower variance for the same compute budget.

6.1.3 Potential Flow Simulation. As a more challenging test case,
Figure 1 shows a potential flow simulation inside a bounding box
with marine life spanning a wide range of spatial scales. The po-
tential field u is governed by the Laplace equation with prescribed
Neumann boundary conditions: an inflow condition d,u = —1 is ap-
plied to the upstream face of the box, an outflow condition d,u =1
to the downstream face, and zero Neumann conditions d,u = 0 to
the remaining faces and the marine life, modeled as a triangle mesh
with 337,744 primitives. SNCH construction on the CPU required
1.4 seconds. We traced 100 streamlines, each with 100 points and
1,000 walks per point, for a total runtime of just under two hours.

Unlike traditional PDE solvers requiring volumetric discretiza-
tions adapted to the finest geometric features, our method can esti-
mate the gradient field at arbitrary resolutions, enabling localized
streamline tracing across multiple scales. Each component-dxu, dyu,
and d,u—is estimated independently with our derivative estimator,
while the baseline computes all three simultaneously in a single
walk. Even so, our approach yields more robust derivatives and
higher-quality streamlines under equal-time constraints. As shown
in Figure 1, the streamlines curve smoothly around the marine life,
as expected in potential flow.

6.2 Reconstructing Solutions to Pure Neumann Problems

A defining feature of pure Neumann problems is that their solutions
are unique only up to an additive constant. This non-uniqueness
poses a fundamental challenge for the original WoSt method [Sawh-
ney et al. 2023], which aims to estimate the solution directly. We
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Fig. 8. Top row: To reconstruct the solution to a pure Neumann problem,
we first fix its value at a single point in the domain. The estimated results
then match the analytical reference pointwise, up to an additive constant
anywhere in the domain (inset). Bottom row: In regions not directly reachable
from the pinned point A, we can recover the solution by chaining multiple
line integrals, e.g., from A to B, then from B to all other points.

take a different approach: since derivatives remain uniquely defined,
we reconstruct the solution by integrating its gradient along paths
originating from an arbitrary reference point. Practical advantages
of our derivative estimator, such as unbiased early termination of
walks, carry over naturally to this reconstruction scheme.

To reconstruct the solution at a query point p € Q, we first select
a reference point pg in the domain and fix the solution value there,
typically setting u(pg) = 0 for simplicity. The solution at p is then
recovered by integrating the gradient along a path x from pg to p:

P
u(p) =utpo) + [ Vu0) - dx 25)
Po

In Figure 8(b), we encode the integration path with linear segments
and uniformly sample it to evaluate directional derivatives along the
direction from pyg to p. This reconstruction accurately recovers the
solution across the domain, matching the ground-truth analytical
function up to an additive constant (shown in the inset).

More generally, the integration path between the reference and
query points can be arbitrary; any parameterized curve suffices. To
validate this path independence, Figure 8(c) shows solutions recon-
structed with an indirect path consisting of two linear segments,
for simplicity. For regions not directly visible from the pinned point
A, the path is routed through an intermediate point B. The recon-
structed values again match the reference solution up to an additive
constant, though longer paths incur slightly higher variance. De-
signing a principled scheme to automatically connect query points
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Fig. 9. Our reconstruction of the pure Neumann problem (d) exhibits lower noise than a Tikhonov regularization with a small absorption coefficient (b), and
reduced bias compared to a large absorption coefficient (c). In (d), the solution is computed by integrating estimated derivatives along linear segments from
each query point to its nearest visible reference point (red dot). The insets show pointwise errors relative to the analytical solution.

or regions of interest to the pinned point via parameterized curves
remains an open direction for future work.

Figure 9 highlights the practical advantages of our method over
the original WoSt estimator, which relies on a Tikhonov regular-
ization to handle pure Neumann problems. As discussed in Section
3.2.3, small absorption coefficients preserve accuracy but amplify
noise, while larger coefficients reduce variance at the cost of signif-
icant bias. In contrast, our approach avoids this tradeoff entirely,
achieving both low noise and low bias in the reconstructed solution.

6.3 Computing Divergence-Free Vector Fields

Helmholtz decomposition is a standard technique for computing
divergence-free vector fields in physical simulations [Bhatia et al.
2013; Nabizadeh et al. 2021]. It expresses an arbitrary vector field b
as the sum of a divergence-free component F and the gradient of a
scalar potential u, i.e., b = F+ Vu. The divergence-free component is
then recovered as F = b — Vu, where u satisfies the Poisson equation
Au = V - b. We perform this decomposition for pure Neumann
problems by directly estimating the gradient Vu, thereby recovering
F without explicitly solving for u.

Magnetostatics. A practical instance of a Helmholtz decomposi-
tion arises in the design of industrial magnets [Wolfram Research
2025]. In this setting, the magnetic flux density is given by B =
to(H + M), where py is the vacuum permeability, M is the magneti-
zation of a permanent magnet, and H is the demagnetizing field. The
field H is derived from a magnetic scalar potential ¢, viaH = =V,
where ¢, satisfies the Poisson equation A¢,, = =V - M.

In practice, the magnetization M is often discontinuous across
the surface of a magnet, denoted M. This discontinuity leads to a
decomposition of the source term —V - M, representing the effective
magnetic charge density, into two physically distinct components: a
volume charge density pp, = —V-M inside the magnet, and a surface
charge density oy, = M- n concentrated at the interfaces. The source
term in the integral equation for ¢, (Equation 3) therefore sums
contributions from these distinct charge distributions:

f G (x, 4) pm (5)dy + f GP(x y)om()dy.  (26)
St StnoM

Similarly, the source integral for the directional derivative d,¢, in
Equation 9 becomes:

/ G (x, ) dopm (y)dy + f 20GP (x. )om(p)dy.  (27)
St StnoM

Field Estimation. We estimate the integrals above using the same
sampling strategies as those employed for the source and Neu-
mann integrals, respectively, in Sawhney et al. [2023, Sections 4.5
& 4.6]. We validate our solver on a Halbach array, a special con-
figuration of permanent magnets that enhances the magnetic field

on one side while nearly can-

celing it on the other. In
(b) M (input)

the inset, the array is en-
closed within a large bound-  (a) Halbach Array
\/(/fﬁ%\\\\\}///é %\{\\\W///ﬁ%\\ﬂ’/ﬂ/%\%

ing sphere with zero Neu-
(

mann boundary conditions.
Using the specified magneti-
zation pattern (b) of the ar-
ray as input, we compute the X § 7

resulting magnetic fie 7 \@/ i
Iting mag ﬁld(d),/\\&\\\\\EJ\%////))] /\\\/ |

7 /i
which closely matches the M& \

reference field lines (c) cal-  (¢) B (reference) (d) B (ours)
culated using Magpylib [Ortner and Coliado Bandeira 2020].

In Figure 10, we compute the magnetic flux density in an indus-
trial magnetic bearing [COMSOL 2025] with extremely fine-scale
surface imperfections. The magnet is represented as a triangle mesh
with 1,189,664 primitives. Building a bounding volume hierarchy
for point sampling of the source integral (Equation 27) required 2.5
seconds, while SNCH construction for the bounding sphere around
the magnet took only a few milliseconds. We then sampled approxi-
mately 27,000 points along the streamlines, performing 10,000 walks
per point, for a total runtime of about two minutes.

Finite element methods face significant challenges in this setting,
as standard tetrahedral meshing tools like TetGen [Si 2015] cannot
robustly process non-manifold or self-intersecting surface meshes.
While mesh repair tools such as MeshFix [Attene 2010] can cor-
rect connectivity issues, they often distort the geometry of critical
features—such as cracks—in the process. Even after repair, TetGen
fails to generate a valid volumetric mesh for this magnetic bear-
ing. More robust meshing algorithms like fTetWild [Hu et al. 2020]
handle degenerate inputs more effectively but still fail to capture

2\

A —
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magnetization M input boundary mesh  tetrahedral mesh (fTetWild)

divergence-free field B (ours) magnitude of field B (ours)

Fig. 10. Magnetic flux density in industrial magnetic bearings. Our Monte
Carlo method accurately computes the divergence-free field B in the far field
while also resolving fine-scale variations near surface defects such as cracks
(bottom row). In contrast, finite element meshing (here using fTetWild with
default settings) may fail to capture such geometric detail (top row, right),
leading to inaccurate simulation results in critical regions.

the intricate crack geometry with default settings (Figure 10, top
right). Although fTetWild’s epsilon parameter can be reduced to
resolve smaller features, it must be set at or below the smallest geo-
metric scale in the domain, potentially leading to excessive memory
consumption and high computational cost.

Boundary element methods, which avoid volumetric meshing
altogether, have seen substantial performance improvements in
recent years [Chen et al. 2024, 2025], but they do not apply directly
to the source-dominated problem considered here. In contrast, our
Monte Carlo method sidesteps meshing challenges entirely and
resolves the magnetic field both near the crack and in the far field,
capturing fine-scale geometric detail with minimal preprocessing.

6.4 Gradient-Based Optimization of Neumann Boundaries

PDE-constrained shape optimization is central to inverse design
and simulation. While Monte Carlo solvers have only recently be-
gun to emerge for such problems, differentiable optimization with
Neumann boundaries has remained largely unexplored due to the
absence of reliable estimators for first- and second-order spatial
derivatives. This gap is particularly relevant in applications such as
magnetic field shaping, thermal insulation design, and structural
load redistribution, where Neumann conditions naturally model
fluxes, stresses, and applied forces. Our method introduces the first
tractable Monte Carlo strategy for estimating parameter derivatives
of a Poisson equation in this setting (Equation 7).

Problem setup. As a simple illustrative example, Figure 12 depicts
the optimization of a fish-shaped Neumann boundary 9Qy, parame-
terized by its position t and scale r, i.e., 7 = (t,r). The objective is to
match the solution u(x, ) of a Poisson equation to prescribed target
values at a sparse set of measurement points (red dots), mimicking
the task of tuning an insulating region embedded in a conductive
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Fig. 11. We evaluate our estimator for the second-order normal deriva-
tive 9%u on a PDE with a known analytical solution. The plot shows the
estimated mean and confidence interval for a fixed evaluation point as the
number of samples increases.
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Fig. 12. Top row: We optimize the position and scale of a fish-shaped
Neumann boundary by minimizing an L? loss between the solution u to
a Poisson equation and target values specified at a sparse set of points
in the domain (red dots). The optimized result, obtained using 100 walks
per iteration to estimate the spatial derivatives of u, is shown on the top
right (c). Bottom row: Ablation study on the number of walks used per
iteration to estimate spatial derivatives of u. We plot the optimization loss
and parameter error for 1, 10, and 100 such walks, while keeping the number
of walks for the parameter derivatives u fixed.

material. For this problem, we minimize the shape functional used
by Miller et al. [2024a, Section 4],

L(n) = / M(x)L(u(x, r)) dx, (28)
Q)

where L is a differentiable loss function and M is a mask that localizes
the objective to regions of interest. In our experiment, we use an L2
loss L(u(x, 7)) = |lu(x, 1) — ttarget (x) ||2. The mask M is defined as
a collection of Dirac delta functions at discrete measurement points
xi, reducing the integral to the discrete sum

S(r) = Z i, 70) = wtanget ()| - (29)



Minimizing S(x) with respect to the parameters 7—and thereby
optimizing the Neumann boundary they define-requires evaluating
the parameter derivatives @ := du/dn. These derivatives quantify
how the solution responds to infinitesimal changes in the boundary
geometry, and are essential for parameter updates via stochastic
gradient descent. In Figure 12, we fix the outer Dirichlet boundary
9dQp (the circle) and optimize only the interior fish-shaped boundary
with zero Neumann conditions, d,u = 0. However, our method
naturally extends to problems involving both boundary types.

Estimation Strategy. In principle, the parameter derivatives ¢ can
be computed by applying the standard WoSt estimator to the dif-
ferential Poisson equation in Equation 7. However, the Neumann
conditions for this PDE involve spatial derivatives of the primal so-
lution u-specifically, Vu and 92u—which must be estimated on the
fly. A naive approach would launch nested random walks at every
step of a differential walk to compute these quantities, using our
directional and second-order derivative estimators from Sections 4.1
and 4.4, respectively. To avoid the resulting combinatorial explosion
in sampling cost, we instead propose a "two-pass" algorithm:

(1) Precomputation Pass: We first uniformly sample points on
the Neumann boundary 9Qy and estimate Vu and 9%u using our
derivative estimators—Figure 11 confirms reliable convergence
of the latter. We cache and index these estimates (e.g., with a
k-d tree) for fast retrieval.

(2) Differential Pass: We then solve for @ using WoSt, retriev-
ing cached spatial derivatives on dQy that fall within the star-
shaped region associated with the current walk location. This
eliminates the need for costly nested walks during estimation.

Figure 12 demonstrates successful convergence of our example
inverse problem: the optimized Neumann boundary closely matches
the target position and radius. To assess the impact of noise in the
spatial derivative estimates, we vary the number of walks used per
iteration to estimate them (1, 10, 100), while keeping the number of
walks for the parameter derivatives @ fixed. The results show that
optimization can diverge when spatial derivative estimates are too
noisy (e.g., with only one walk), but typically succeeds when the
noise level is more moderate.

More broadly, the convergence of an inverse solver depends on
many factors beyond gradient quality, including the choice of loss
function, regularization or preconditioning strategies, optimization
algorithm, and learning rate schedule. Although our demonstration
involves a simple geometry with few parameters, it highlights the
feasibility of Monte Carlo-based gradient estimation as a founda-
tion for scalable, gradient-driven design with parameterized Neu-
mann boundary constraints. Extending this approach to complex
geometries and higher-dimensional parameter spaces is an impor-
tant direction for future work.

6.5 Sensitivity of Derivative Estimation to Sharp Corners

Our method builds on the key insight that, just as the solution u to a
Poisson equation can be estimated using random walks, so too can
its directional derivative d,u. This idea has also been explored more
broadly in the context of PDE-constrained optimization [Yilmazer
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a) Sharp Corners

Fig. 13. Left: Our method produces inaccurate derivative estimates in the
presence of sharp corners. This limitation is evident in the potential flow
simulation as streamlines fail to correctly curve around the boundary. Right:
When the corners are rounded, the estimated gradients yield streamlines
that closely match the expected flow.

et al. 2022; Yu et al. 2024; Miller et al. 2024a], and it forms the
foundation of our approach.

However, while the standard WoSt estimator exhibits stable con-
vergence when estimating u on polyhedral domains, our method-
which directly estimates d,u—can struggle in the vicinity of sharp
corners or edges. This is because on piecewise-flat domains such as
triangle meshes, the solution typically remains continuous up to the
boundary, but its directional derivatives can become unbounded-a
phenomenon known as the corner singularity problem [Grisvard
2011]. This issue is especially pronounced at reentrant (concave)
corners, where abrupt changes in boundary orientation induce steep
gradients in the solution. Derivative estimates are particularly sensi-
tive in such regions, as differentiation tends to amplify irregularities
in the underlying solution.

Moreover, the boundary integral equation introduced in Section
4.1 to estimate dyu does not account for geometric singularities
inside star-shaped regions, leading to biased derivative estimates
near sharp features. Figure 13 illustrates this limitation in a potential
flow simulation: sharp corners (left) produce streamlines that exhibit
physically implausible behavior, failing to bend naturally around
the obstacle with zero Neumann boundary conditions. In contrast,
rounding the corners (right) restores smooth flow patterns that align
with physical expectations.

The challenges posed by geometric singularities are not unique
to our method. In the finite element literature, reentrant corners
are known to degrade accuracy, and are typically mitigated through
partial remedies such as adaptive mesh refinement or higher-order
basis functions. A promising direction for improving our estimator
is to mollify the boundary geometry near concave corners, thereby
reducing singular behavior and improving derivative accuracy.

7 CONCLUSION

We introduced a Monte Carlo framework based on the walk on
stars algorithm for estimating spatial and parameter derivatives of
Poisson equations. Our method is particularly effective in Neumann-
dominated problems, unlocking new capabilities including prin-
cipled solution reconstruction, divergence-free field estimation,
and shape optimization with parametrically defined boundaries.
At the same time, it inherits limitations of the underlying WoSt
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estimator—-most notably, slower progress near concave boundary
regions, where random walks take smaller steps. We expect future
improvements to the base algorithm to extend naturally to our deriv-
ative estimators. Future directions include accelerating walks near
concave boundaries, reducing bias through boundary mollification,
and extending the framework to broader classes of elliptic PDEs.
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A DERIVATION OF THE DIRECTIONAL DERIVATIVE BIE
FOR THE NEUMANN BOUNDARY

Starting from Equation 8, we derive the integral expression for the
directional derivative d,u in Equation 9. The primary challenge lies
in eliminating the second-order mixed derivative 92,u in Equation
8. Our derivation is divided into four steps:

A.1  Normal And Tangential Decomposition

We decompose 92,u on dSty into normal and tangential compo-
nents,

du=0*u(v-n)+D*u n-or, (30)

where D? represents the Hessian.

A.2  Rewriting the Tangential Component
We apply the identity [Henrot and Pierre 2018, page 227]

D%u-n-vpr =Vrouu-or —Vu - (v-Vrn) (31)

along with the relations v - Vrn = Vr (v - n) (as v is constant) and
dnu = h (the prescribed Neumann condition). This yields

8fwu = a,%u (v-n)+Vrh-or —Vu-Vr(v-n). (32)

A.3  Rewriting the Normal Component

We apply the Laplacian identity [Henrot and Pierre 2018, Equation
5.59]

Au = Aru +H8nu+8ﬁu=—f, (33)
and substitute 92u = —(f + Aru + Hd,u) into Equation 32 to get

Zu=—(f+Aru+Hh)(v-n)+Vrh-or —Vu-Vr(v-n). (34)

A4 Integration by Parts

Finally, we substitute the right hand side of Equation 34 into the sur-
face integral faStN GBa2 ,u, and apply integration by parts [Henrot
and Pierre 2018, Equation 5.64] to the term involving Aru:

/ GB(v-n)Aru = —/ [(v . n)VrGB -Vu+GBvu - vr (v-n)|.
ISty ISt

(35)
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Collecting terms then yields

VrGB
/ pB (vr—(v-n) rB -Vu
ISty P

|Pn|apu

B .
+/aStNP (v-n)h (36)

N
Ho

—/ GB [avrh—(u~n)Hh—(v-n)f],
ISt

o
which matches all the components of the BIE on dSty that we use
in the main text.

B DERIVATION OF THE DIRECTIONAL DERIVATIVE BIE
FOR THE DIRICHLET BOUNDARY

We derive an analogous BIE to Equation 36, but this time for a star-

shaped region St that contains parts of the Dirichlet boundary oQp.

As in Appendix A, the challenge lies in handling the second-order

mixed derivative 92,u in the integral

/ GBa2 u. (37)
dStp

We begin with the identity
a,zwu =—(f+Aru+Hopu)(v-n)+Vropu-vr —Vu-Vr(v-n) (38)

from Equation 34, where the normal derivative dnu is no longer
known on dStp. We apply integration by parts to the term involving
Vronu - or in the surface integral above to get

/ GBVra,,u -ur = —/ [VFGB - uropu — G®Hv - noyu| .
aStp dStp

(39)
Collecting terms, we obtain the final expression for the directional
derivative dyu on dStp:

B
-ur) onu

- / " [~ @ m)Arg - Vr(o-m)-Vig - (0-m) f].
dStp

’77)
(40)

C DERIVATION OF THE EDGE INTEGRAL

On polyhedral domains, edges introduce Dirac delta contributions
in H and dy. h within 1, (Equation 12), producing singular terms
that must be treated explicitly. We derive Equation 22 by isolating
the singular part of the second integral in Equation 9, namely

/ G® |0y h — (v - n)HA], (41)
ISt

where we have omitted the smooth term —(v - n) f for clarity.
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C.1  Mollification of Edges

We mollify an edge e (with face normals n*) by replacing it with a

smooth cylindrical surface S, of radius & > 0, yielding a C? boundary

where dy-h — (v - n)Hh is well-defined and surface calculus applies.
For a constant vector field v, we can employ the surface diver-

gence identity [Henrot and Pierre 2018, Equation 5.55]:

Vr-or =—(v-n)H, (42)

where or = v — (v - n)n is the tangential component of v on the
surface. Multiplying this identity by the Neumann data h and rear-
ranging, we obtain

(v-n)Hh = =V - (hor) + Vrh - or. (43)

Using dyh = Vrh - or, the terms cancel in Equation 41, leaving
/ GPVr - (hor) dA, (44)
Se

C.2  Surface Divergence Theorem

Applying the surface divergence theorem to Equation 44 gives
/ GPVr - (hor)dA = j{ GBh(or - 1)d, (45)
SE ass

where t is the unit tangent vector to 9S.

The boundary 95, has two circular arcs (radius ¢) and two seg-
ments on the faces. As ¢ — 0, the arcs vanish and the segments
collapse to the edge e. On them, or -t = v - tE; taking the limit
(allowing different Neumann data on each side) yields

/GB [(-tHh* + (0-t7)h7] dl. (46)
e
Summing over all edges gives the edge integral in Equation 22.

D MITIGATING SINGULAR KERNELS WITH CONTROL
VARIATES

Monte Carlo estimators of boundary integrals can have high vari-
ance when kernels are singular near x. This affects the Neumann
boundary integral (Equation 3), the edge integral (Equation 22),
and the second-order normal derivative (Equation 16). We reduce
variance with control variates: subtract a locally matching singular
surrogate and add back an equivalent smooth integral.

D.1  Neumann Boundary Integral

The Green’s function in .[aStN GB(x, Z)Ny(2)dz is singular as z— x.
To address it, we introduce a control variate based on a constant
vector field &t. We define this field such that its normal component
matches the singular term: @ - n(x) = n,(x), where x is the point
on dSty closest to x. It induces a linear potential function ¢(z) =
i1 - z, which satisfies Laplace’s equation. Therefore, ¢ satisfies the
boundary integral equation from Equation 3:

¢(x)=/aStPB(x,z)gs(z)dz—/aStGB(x,z)(a-n(z))dz.

Using ./‘HSt PB(x,z)dz = 1 gives the identity:

/ GB(x,2) (it - n(z))dz = / PB(x,2)it - (z - x)dz. (47)
ISt oSt
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Subtract fasw GB(x, z) (i1-n(2))dz and add back its equivalent from
Equation 47:

/ GB(x, 2)Np(z)dz = / GB(x, 2)(ny(2z) —it - n(z))dz
IStN IStN (48)
+ ‘/aSt PB(x,2)it - (z — x)dz.

Then (5, — @ - n) —» 0 as z — X, which reduces the impact of the
singularity of GB, and PB can be importance sampled.

D.2 Edge Integral

The edge integral in Equation 22 also suffers from high variance due
to the singularity of GB(x, z). We introduce a control variate using
a constant vector field & chosen such that @ - n*(x) = h* (%), where
h*(x) are the prescribed Neumann data on the faces adjacent to the
edge, and x is the point on the edge r?StIIEI closest to x. This involves
subtracting and adding the term:

/ GB(x, ) [(u n(2) (vt (2))+ (it-n*(2))(v- t+(z))] dl.
aStE:

(49)
Transform this using integration by parts for ¢(z) = & - z on JStn:

B P, == d
/aStgG (x,2) Zi:(u n*(z2))(v-t(2))dz

(50)
= / (v -n(z))(VrG(x, z) - it)dz.
ISty
The edge integral becomes:
/ . GB(x, z) Z [(ht(z) —i-n*(2)(v- ti(z))] dz
oSt m (51)

+/ (v-n(2))(VrG(x,2) - it)dz.
ISty

Now (h* — it - n%) = 0 near &, regularizing the singularity and the
surface term can reuse the direction samples from the primal walk.

D.3 Second-Order Normal Derivative Integral

Estimating 92u(x) also suffers from singular d,,, P® and a, . GB. Fol-
lowing Yu et al. [2024, Eq. 26], we use control variates from h(x)
and 9, f(x):

/ (anxu(z) - h(x))anxPB(X, z)dz
dB(c,R) )
+ /B(C’R) (On f(Y) = On, f (%)) GB(x, y)dy + 3nxf(x)ﬁ

Here B(c, R) is the off-centered ball with kernels PB.GB and N the di-
mension. The differences (9, u(z) —h(x)) and (9n, f(y) =0, f(x))
vanish as the point approaches x, alleviating the singularities and
improving the robustness of the derivative estimator for Neumann
shape optimization.
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