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Fig. 1. We simulate heat conduction by solving a Laplace equation with Robin boundary conditions on a triangle mesh of a turkey leg containing one million
primitives. The Robin conditions prescribe a radiant flux, precomputed via ray tracing on a texture to capture oven radiation (left). Our harmonic caching
algorithm achieves robust temperature estimation with lower error and fewer correlation artifacts than alternative Monte Carlo solvers for PDEs.

We present a variance reduction technique for Walk on Spheres (WoS) that
solves elliptic partial differential equations (PDEs) by combining overlapping
harmonic expansions of the solution, each estimated using unbiased Monte
Carlo random walks. Our method supports Laplace and screened Poisson
equations with Dirichlet, Neumann, and Robin boundary conditions in both
2D and 3D. By adaptively covering the domain with local expansion regions
and reconstructing the solution inside each region using an infinite Fourier
series of the harmonic function, our method achieves over an order of
magnitude lower error than traditional pointwise WoS in equal time. While
low-order truncations of the series typically introduce limited bias, we also
introduce a stochastic truncation scheme that eliminates this bias in the
reconstructed solution. Compared to recently developed caching algorithms
for WoS, such as Boundary and Mean Value Caching, our approach yields
solutions with lower error and fewer correlation artifacts.
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1 Introduction
Monte Carlo algorithms for solving partial differential equations
(PDEs), such as Walk on Spheres [Muller 1956; Sawhney and Crane
2020], avoid the meshing challenges inherent in traditional finite
element methods (FEM). By sidestepping volumetric discretization,
these grid-free methods provide simple and scalable solvers for
elliptic PDEs–such as Laplace and screened Poisson equations–with
applications across science, engineering, and computer graphics.
Yet WoS estimators often suffer from high variance, requiring

many random walks to obtain low-noise solutions at individual
points in the domain. This inefficiency limits their practical utility,
particularly when dense or high-precision solution fields are de-
sired. In this work, we introduce a new functional-expansion frame-
work that substantially improves the efficiency of WoS and related
methods in such settings. Prior variance reduction strategies, such
as boundary value caching [Miller et al. 2023] and mean value
caching [Bakbouk and Peers 2023], improve efficiency by spatially
reusing samples. While effective in certain regimes, these meth-
ods may introduce artifacts and do not fully leverage the harmonic
structure of the underlying PDE.

Our approach goes further by directly exploiting both the smooth-
ness and harmonic structure of elliptic PDE solutions. Specifically,
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Fig. 2. Left to right: For a harmonic function, the value at the center of a ball equals the average of � on its boundary (the mean value property, term �0). More
generally, the full solution inside the ball can be reconstructed as a weighted sum of separable basis functions. Each basis term is obtained by projecting the
boundary data � (�,Θ) onto angular modes and scaling them radially inward using the generalized harmonic expansion.

within any ball fully contained in the domain Ω ⊂ R2, the solution
admits an analytic local Fourier expansion. For example, if Δ denotes
the Laplace operator and �(�) the prescribed Dirichlet boundary
data, then the solution � of the Laplace equation

Δ� (�) = 0 on Ω, � (�) = �(�) on �Ω, (1)
can be expressed in polar coordinates (�, � ) as (see Fig. 2)

� (�, � ) = �0 + 2
∞∑

�=1

( �
�

)�
(�� cos �� + �� sin �� ), (2)

where� is the radius of the ball, and �� , �� are the Fourier coefficients
of the boundary function � (�, � ), with � denoting the order:

�� =
1
2�

∫ 2�

0
� (�,Θ) cos(�Θ) dΘ, � = 0, 1, 2, · · · (3a)

�� =
1
2�

∫ 2�

0
� (�,Θ) sin(�Θ) dΘ, � = 1, 2, · · · . (3b)

In standard WoS, the mean value property corresponds to retaining
only the zeroth-order term in this expansion: it estimates � at the
center of the ball (� = 0) by averaging � over the surface at � = �,
yielding � (0) = �0. If we only required � at a single location, this
would be all we could hope to exploit. However, the full harmonic
expansion in Eq. (2) offers much more if our goal is to estimate �
across a region of interest: once the boundary values � (�, � ) are
known, the solution � (�, � ) at any point inside the ball follows from
simple radial scaling of each harmonic. This expansion is essen-
tially a generalized mean value property that reconstructs solutions
within the entire ball (Fig. 2), not just the center. More generally,
such Fourier expansions exploit the separable structure of harmonic
functions to achieve a lossless form of dimensionality reduction:
to reconstruct the solution within an �-dimensional ball using a
harmonic series expansion, we require only a set of coefficients

encoding the boundary function on the (� − 1)-dimensional sphere,
while the radial component remains analytic and independent of
these coefficients.
To exploit this property, we propose to estimate the coefficients

(�� , �� ) via Monte Carlo by launching randomwalks from the bound-
ary of a ball in the domain. We then reconstruct an analytic estimate
� (�, � ) inside the ball using a truncated harmonic expansion. This
strategy falls under the general class of functional expansion tallies
(FET) [Griesheimer et al. 2006], which are known to yield signifi-
cantly lower variance than pointwise methods for smooth solutions.
In our analysis, we show this approach is highly effective for elliptic
PDEs, offering unbounded error reduction compared to pointwise
WoS (assuming sufficient query resolution).

Our approach is inspired by Booth [1982, 1981], who introduced
angular FETs for the screened Poisson equation in two dimensions.
However, their formulation was not broadly evaluated or extended
beyond a single ball, leaving open key questions about efficiency,
accuracy, and applicability to more general problems. We revisit
and generalize Booth’s method, providing an in-depth study of
its accuracy and efficiency (Sec. 3.1). Notably, while Booth [1982]
discusses using the reconstructed solution both inside and outside
the expansion ball (for locations within the same domain), we find
that reliable reconstruction is achieved only within a subregion of
the ball—typically up to � < 0.9�. Fortunately, due to the rapid
decay of higher-order terms in Eq. (2), even low-order truncations
suffice for high accuracy (Fig. 3). This property enables us to define
compact harmonic cache records: local, continuous, differentiable,
and reusable representations of the solution that can be efficiently
queried and blended to approximate the solution over larger regions.

We extend spherical cache records to support Laplace and screened
Poisson equations in 2D and 3D, as well as Neumann and Robin
boundary conditions by invoking Walk on Stars [Miller et al. 2024b;
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Fig. 3. Impact of boundary functions and truncation order on reconstruc-
tion accuracy inside a disk. We examine how reconstructed solutions of the
Laplace equation vary with harmonic truncation order � under different
Dirichlet boundary conditions on a unit circle. Top: For constant boundary
values, the solution is recovered exactly using only the zeroth-order term
(� = 0). Middle: For a bandlimited signal of order 8, perfect reconstruction
requires all terms up to � = 8, with no further improvement beyond that
point. Bottom: For the infinite-frequency Heaviside function, error is un-
avoidable but remains low across most of the disk even with modest �, due
to the rapid decay of higher-order terms. Error plots (right) confirm that
inaccuracies concentrate near the boundary as � → �.

Sawhney et al. 2023] from the surface of each record. Building on
this local construction, we then propose a practical global caching
algorithm (Sec. 3.2) that covers the domain with a collection of
overlapping maximal spheres. Each cache record estimates its lo-
cal Fourier coefficients via unbiased Monte Carlo walks, and their
combined reconstructions yield a continuous approximation of the
solution field across the domain (Fig. 4). Finally, we show how to han-
dle source terms by decomposing the problem into homogeneous
and inhomogeneous components (Sec. 3.3).

We demonstrate that this harmonic caching (HC) method achieves
over an order of magnitude lower error than traditional pointwise
for equal computational cost, and outperforms recent variance-
reduction methods for WoS.

2 Related Work
Grid-Free Monte Carlo PDE Solvers. Monte Carlo methods such

as Walk on Spheres [Muller 1956] avoid the meshing challenges of
traditional grid-based solvers like the finite element method. WoS
has gained popularity in computer graphics for its simplicity and
robustness in handling complex geometries [Sawhney and Crane
2020]. Recent research has extended WoS to support more general
equations [Sawhney et al. 2022] and domains [Nabizadeh et al. 2021],
and to handle Neumann and Robin boundary conditions through
the Walk on Stars (WoSt) algorithm [Miller et al. 2024b; Sawhney

Fig. 4. Overview of our harmonic caching algorithm for solving elliptic PDEs.
We leverage the generalized mean value property of harmonic functions
(Fig. 2) to reconstruct solutions from local boundary estimates. Within user-
specified regions of interest (left), we adaptively place overlapping spherical
cache records (middle), each storing a compact set of Fourier coefficients.
Blending local reconstructions from each record yields a smooth, low-error
approximation across the region (right).

et al. 2023], which is a strict generalization of WoS. These advances
have enabled applications in fluid dynamics, thermal imaging [Bati
et al. 2023; De Lambilly et al. 2023; Jain et al. 2024; Rioux-Lavoie
et al. 2022], and inverse problems [Miller et al. 2024a; Yilmazer
et al. 2024; Yu et al. 2024]. Walk on Boundary (WoB) [Sugimoto
et al. 2023] provides an alternative grid-free method but generally
exhibits higher bias and variance in non-convex domains.

Variance Reduction for Monte Carlo Solvers. Despite its advantages,
WoS produces inherently noisy estimates, naturally motivating the
development of variance reduction techniques. Mean Value Caching
(MVC) [Bakbouk and Peers 2023] leverages a volumetric version of
the mean value principle by reusing walks within a ball around each
evaluation point. However, its efficiency is limited near boundaries
where few cache samples can be gathered, leading to correlation
artifacts. Boundary value cache (BVC) [Miller et al. 2023] computes
solution and gradient estimates at boundary cache points and splats
their contributions across the domain, enabling efficient sample
reuse but introducing singular artifacts near cache points due to
the absence of importance sampling. Reverse WoS (RWoS) [Qi et al.
2022] initiates walks “in reverse” from the boundary and source
locations; it is effective when boundary and source functions are
localized but becomes inefficient if solutions are needed only in a
small region of interest (ROI).

Neural approaches for reducing noise have also emerged. Neural
Caching [Li et al. 2023; Nam et al. 2024] trains a neural network to
approximate PDE solutions from WoS estimates, though training
can be time-consuming and predictions exhibit difficult-to-quantify
bias. Orthogonal to sample reuse and caching, Li et al. [2024] train a
network to learn a control variate and its antiderivative, achieving
unbiased variance reduction for WoSt estimators. Along similar
lines, Huang et al. [2025] adopt online learning to train a neural field
representing a guiding distribution, enabling importance sampling
during the walk and thereby reducing noise.

Our approach instead explicitly leverages the harmonic structure
of PDE solutions to share computation and further reduce vari-
ance. Fourier reconstruction enables effective sample reuse even
near domain boundaries (unlike MVC), produces robust reconstruc-
tions without singularity artifacts (unlike BVC), and focuses the
computational budget on the region of interest (unlike RWoS). We
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provide a comprehensive evaluation of our method against these
state-of-the-art variance-reduction techniques.

Finally, in unpublished concurrent work, Czekanski et al. [2024]
propose a neighbor-reuse strategy using the off-centered Poisson
kernel for unbiased caching of WoS estimates in 2D. Our harmonic
series expansion reduces to their approach in special cases but
generalizes to handle source terms, screening, and mixed boundary
conditions in both 2D and 3D. We provide in-depth analysis and
comparisons in the supplemental document.

Connections to (ir)radiance caching. In developing our algorithm,
we take inspiration from irradiance [Ward et al. 1988] and radi-
ance [Jarosz et al. 2008a; Křivánek et al. 2005b] caching methods.
These methods compute expensive Monte Carlo estimates of illu-
mination only at sparse locations across the scene and reuse them
via extrapolation to gain efficiency. A key ingredient is estimating
accurate gradients [Jarosz et al. 2012, 2008b; Křivánek et al. 2005a;
Marco et al. 2018; Ramamoorthi et al. 2007; Schwarzhaupt et al. 2012;
Ward and Heckbert 1992], which allows for local first-order Taylor
expansions of the solution around each cached location. This idea
can also be applied to WoS [Sawhney and Crane 2020], but at the
cost of introducing bias. Unfortunately, while Taylor expansions
provide a reasonable approximation for smooth functions, they do
not exploit the harmonic structure of the PDEs we consider. In
contrast, our method uses a harmonic expansion, which we show
can (optionally) be made unbiased even when truncated to a finite
number of terms.

3 Method
We outline our harmonic caching method for solving screened Pois-
son equations with mixed boundary conditions:

Δ�� (�) − ��� = −� (�) on Ω,

�� (�) = �(�) on �Ω� ,

��� (�)
���

= ℎ(�) on �Ω� ,

��� (�)
���

+ � (�)�� (�) = ℓ (�) on �Ω�,

(4)

where �Ω� , �Ω� , and �Ω� denote the Dirichlet, Neumann, and
Robin portions of the boundary, and �� is the outward normal at � .
The functions �(�), ℎ(�), and ℓ (�) specify the boundary data, � (�)
is the source term, � (�) > 0 the Robin coefficient, and � ≥ 0 the
screening parameter. Equation (4) covers several common PDEs,
including Laplace (� = 0, � = 0) and Poisson (� = 0) equations.
We first focus on homogeneous equations (� = 0) in Sec. 3.1,

denoting their solution by �, and describe how to reconstruct the
solution inside a single ball fully contained in the domain. For clarity,
we largely restrict our exposition to two dimensions and defer the
necessary extensions to three dimensions to the appendix. We then
extend this local construction into a global solver in Sec. 3.2 by
covering the domain with overlapping balls and blending their local
predictions to approximate solutions over arbitrary ROIs. Finally,
we incorporate source terms to handle inhomogeneous equations
(� ≠ 0) in Sec. 3.3, with the resulting solution denoted by �� .

3.1 Reconstruction Within a Single Ball

�0�1�2�3 ��Ω�

�Ω�Ω
2�

The core building block of our method
is as follows: we place a ball entirely in-
side the domain Ω, estimate the solution
at a set of points on its boundary using
WoS(t), and then interpolate the solu-
tion into the interior using a harmonic
expansion. As illustrated in the inset, we
estimate the unknown values � (�0) by launching walks from sam-
pled points on the boundary of the ball centered at � . Rather than
averaging these values to compute � (�)—as in traditional WoS—we
project the boundary data onto a Fourier basis. The resulting har-
monic expansion defines a function that allows the solution to be
evaluated everywhere inside the ball.
For the homogeneous screened-Poisson equation (� = 0, � ≥ 0),

the harmonic expansion generalizes the Laplace solution in Eq. (2)
to the form [Booth 1982, 1981]:

� (�, � ) = �0R0
� (�, �) + 2

∞∑

�=1
R�
� (�, �)

(
�� cos(�� ) + �� sin(�� )

)
, (5)

where �� and �� are the Fourier coefficients in (3), and R�
� (�, �) is

the radial basis function

R�
� (�, �) =




(�/�)� if � = 0,
�� (

√
�� )

�� (
√
��) if � > 0,

(6)

with �� denoting the modified Bessel function of the 1st kind. In 3D
(Appendix B), the harmonic expansion instead employs spherical
harmonics for the angular terms and a different radial function
when � > 0.

We estimate the coefficients �� , �� using Monte Carlo integration:

�̂� =
1



�∑
�=1

�̂ (�, � � ) cos(�� � )
� (� � )2�

, �̂� =
1



�∑
�=1

�̂ (�, � � ) sin(�� � )
� (� � )2�

, (7)

where �̂ (�, � � ) is the solution estimated at boundary points � � using
WoSt, and � (� � ) is the sampling density for � � . To improve the rate
of convergence in Monte Carlo integration for these coefficients, we
adopt a uniform-jittered distribution of equally spaced but randomly
rotated points on the ball’s boundary [Booth 1982; Pauly et al. 2000;
Ramamoorthi et al. 2012; Singh et al. 2019], giving � (� � ) = 1/2� in
2D. Importantly, we reuse the same boundary samples � � to estimate
all orders � . Using WoSt rather than WoS enables support for more
general mixed boundary conditions on the domain boundary.
The expansion in Eq. (5) yields the exact solution inside the ball

when the boundary values are known and the series is taken to in-
finity. In practice, we truncate the series at order 	 and estimate the
boundary values via Monte Carlo, introducing both bias and vari-
ance. Fortunately, the radial basis functions R�

� (�, �) decay rapidly
with decreasing � , especially for higher orders � . For � = 0, the
weights reduce to (�/�)� , while the Bessel-based functions for � > 0
have a similar shape. As a result, low-order truncations suffice to
reconstruct the solution accurately throughout most of the ball. In
our experiments, truncations at 	 = 10 remain robust with low
bias within a conservative subregion (� < 0.9�), as illustrated in
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Fig. 3. This enables each ball to serve as a compact and accurate
local approximation of the solution.

If biased reconstruction is unacceptable, an unbiased prefix-sum
estimator [Misso et al. 2022] can be formed by drawing 	 stochas-
tically from a distribution over the positive integers. For example,
sampling 	 from a geometric distribution with mean 〈	〉 corre-
sponds to applying a Russian roulette [Arvo 1993] with termination
probability 1/〈�〉 at each term of the sum in Eq. (5).

Performance. Before combining local reconstructions from multi-
ple caches into a global solver, we first evaluate performance within
a single ball compared to standard pointwise WoS. To this end, we
place a ball at the center of a square domain and estimate the solu-
tion� over a grid of pixels using two approaches: (1) pointwise WoS,
where each pixel launches its own � walks; and (2) our method,
where the same total number of walks are uniformly distributed
along the ball’s boundary to estimate the Fourier coefficients and
reconstruct the interior. By matching the total walk count, both
methods achieve comparable runtime.

We varied the screening parameter, query resolution, reconstruc-
tion radius, and boundary function. Both approaches exhibited the
expected 1/� squared-error scaling with respect to the number
of walks �, confirming that pointwise estimation and function-
expansion tallies converge at the same asymptotic rate until trunca-
tion bias dominates. To quantify the improvement of our method,
we computed the ratio of the sum of squared errors between the
two methods, considering only the reconstructed pixels.
We observed that resolution was a key factor in performance:

improvement increased linearly with the number of pixels, implying
that the harmonic approach can outperform pointwise estimation
by an unbounded margin at high query resolutions. Put differently,
unlike pointwise MC, harmonic reconstruction exhibits a resolution-
independent sum of squared errors.
We further observed that the benefit of our approach decreases

with increasing harmonic complexity of the boundary data: the
error ratio falls approximately as 1/	 with truncation order 	. The
screening parameter had little effect on relative performance, and
reconstruction radii in the range [0.7�, 0.9�] provided the best bal-
ance between spatial coverage and truncation error. Additional
experimental details are provided in the supplemental material.

3.2 Harmonic Caching for General Domains
Inspired by irradiance caching [Ward et al. 1988], we populate a
cache database with overlapping spherical expansions to handle
arbitrary regions of interest. Each cache record corresponds to a ball
centered at p� with radius �� , storing the Fourier coefficients {�̂�

�
, �̂�

�
}.

As described in Sec. 3.1, the coefficients are always estimated on the
surface of themaximal inscribed ball with radius��Ω (p� ), but–based
on the analysis in the previous section–we set �� = 0.9��Ω (p� ) to
reduce truncation error for each cache record.

Reconstruction. We estimate the solution at any location within
an ROI by blending contributions from overlapping cache records.
For a query location x, we identify the set of records � (x) that cover

x and compute the weighted average:

�̂ (x) =
∑
�∈� (x) � (�� ) �̂� (x)∑

�∈� (x) � (�� )
, (8)

�0�Ω�

�Ω�Ω ��1
where �̂� (x) is the Fourier reconstruc-
tion from the �th record (evaluated by
inserting {�̂�

�
, �̂�

�
} into Eq. (5)), and� (�� )

is a weight based on the normalized dis-
tance�� = 1− ‖x−p� ‖

��
between the query

location and record center. Since re-
construction error grows with distance
from the record center (Fig. 3), constant weights can cause discon-
tinuity artifacts and are therefore be avoided. To ensure smooth
reconstruction, we use the smoothstep function� (�� ) := 3�2

�
− 2�3

�
which assigns weight one at the record center p� and falls smoothly
to zero at the record boundary, without any singularities. We also
experimented with alternative weighting functions that satisfy these
properties, but found little difference in reconstruction quality.

Populating the cache. To populate the cache database, we adopt
a lazy evaluation scheme inspired by irradiance caching [Ward
et al. 1988]. For each query location in the ROI, we first identify the
overlapping records � (x) and evaluate the denominator of Eq. (8).
If this sum exceeds a user-defined threshold �min, the solution is
reconstructed from the existing records. Otherwise, a new cache
record is generated at x, inserted into the database, and included
in � (x) for reconstruction using Eq. (8). This procedure yields an
adaptive, Poisson-disk-style distribution of cache records over the
ROI, with�min controlling their overall density.

Choosing walk counts for coefficient estimation. Creating a new
record via Eq. (7) requires choosing the number of walks
 launched
from the surface of the largest contained ball. This choice strongly
impacts reconstruction error, as it determines the variance of the
coefficient estimates. A simple option is to let the user fix 
 , but
we found that varying 
 across the domain provides significant
benefits. Each cache record � therefore selects its own 
� . Records
with larger radii contribute to more query locations, while smaller
balls produce smoother, nearly constant solutions—both suggesting
that 
� should increase with �� . After testing different strategies, we
found that setting 
� = ��
−1

�
, where � is the domain dimension,

provides a good balance. The user controls �, which specifies the
number of walks per arc length (2D) or per solid angle (3D). We
clamp 
� ≥ 32 for all records, and in 3D, where WoSt queries are
more expensive, we cap 
� at 10,000.

Additional refinement pass. When a new cache record is cre-
ated, walks launched from the surface of the largest ball often pass
through regions already covered by existing records. This raises
a natural question: at the �-th step of a walk, should we evaluate
� (x� ) recursively with WoSt, or reconstruct it from existing cache
records via Eq. (8)? The latter is attractive because, if successful, it
provides a much lower-variance estimate that effectively aggregates
many prior walks.
To enable such sample reuse while ensuring thread-safe cache

construction, we adopt a two-pass scheme. When populating the
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Fig. 5. Our biased harmonic caching using a truncated expansion (� = 10,
bottom) can be debiased with a prefix-sum estimator employing stochastic
truncation (〈�〉 = 10, top). We compute and visualize the bias and variance
of both estimators for a Dirichlet problem [Qi et al. 2022, Figure 8] by
running independent trials with different random numbers for WoS (and for
stochastic truncation), each with the same cache (bottom right). Stochastic
truncation yields an unbiased reconstruction but with higher variance,
visible as stronger correlation artifacts in a single run (top left).

cache initially, each walk used to estimate Fourier coefficients pro-
ceeds independently without cache lookups. Once the cache is built,
we duplicate it and perform an “overture” pass to refine the coeffi-
cients: for each record in the duplicated cache, we expand the largest
inscribed ball and recompute the coefficients via Eq. (7). In this pass,
however, �̂ (�, �� ) is obtained by looking up the previous cache via
Eq. (8), rather than through recursive WoSt. Because these lookups
provide lower variance estimates, we use only 0.5
� samples to
recompute the �-th record, reducing lookup overhead. During this
pass, we also set �min = 0: whenever a valid record overlaps the
query location, the solution is taken directly from the cache.

Incorporating contributions from neighboring cache records en-
ables substantial sample reuse, which we found highly effective for
reducing noise in high-order coefficients. This strategy is conceptu-
ally similar to the recursive reuse in MVC [Bakbouk and Peers 2023]
and could, in principle, be applied repeatedly to extend reuse across
larger distances. In practice, however, we found a single overture
pass to be sufficient.

3.3 Reconstruction with Source Term Contributions

�Ω�

�Ω�

Ω
� �Θ�′� �0.9�

To estimate �� for the inhomogeneous
equation in Eq. (4), we extend the
harmonic expansion in Eq. (5) by in-
corporating source term contributions
via Green’s functions [Duffy 2015].
Specifically, in 2D we integrate the off-
centered Green’s function of the ball
against the source term � over the entire ball:

�� (�, � ) ≔ � (�, � ) +
∫ 2�

0

∫ �

0
� (�′,Θ)� (�, � ;�′,Θ)�′d�′dΘ, (9)

where � (�, � ;�′,Θ) denotes the contribution from a unit source
at (�′,Θ) to the evaluation point (�, � ). While this source integral
could, in principle, be further expanded using a multipole expan-
sion [Müller and Steinmetz 1995], doing so introduces an additional

� m i n = 1 9� m i n = 0

� = 1 6 �� = 1 5 3 6 �

Fig. 6. Top: Increasing the truncation order � of the harmonic expansion
reduces reconstruction error across all boundary condition types: Dirichlet
(left), mixed Dirichlet/Neumann (middle), and Robin (right). Very small
� (e.g., � = 1) yields poor results, while large � increases runtime with
diminishing returns. Middle: Increasing�min produces denser cache records
and improves accuracy, with cost scaling roughly linearly. Bottom: Increasing

 raises �� , the number of walks per cache record. This suppresses noise in
the coefficients and reduces reconstruction error, shown here as a function
of the average �� across all cache records.

set of radial coefficients, substantially increasing both estimation
cost and cache storage. Instead, we evaluate the integral directly
using Monte Carlo integration:

�̂� (�, � ) = �̂ (�, � ) + 1
�

	∑
�=1

� (� � ,Θ� )� (�, � ;� � ,Θ� )
� (� � ,Θ� )

, (10)

where �̂ (�, � ) is the harmonic reconstruction from overlapping
records using Eq. (8), � (� � ,Θ� ) = 1

��2 is the uniform sampling
density for the source variable (� � ,Θ� ) in the disk, and � is the
number of source samples. Importantly, we introduce no additional
modifications or cache storage to the harmonic caching algorithm
in Sec. 3.2 (the underlying WoSt estimator already supports source
terms [Sawhney et al. 2023, Sec. 4.6]); we simply extend the series
expansion in Eq. (5) with the estimator in Eq. (10). This estimator is
also invoked during the refinement pass for the coefficients, using
the same number of source samples as in the final reconstruction.

4 Results and Evaluation
In this section, we evaluate harmonic caching, beginning with imple-
mentation details and biased versus unbiased variants, then analyz-
ing parameter choices, and finally comparing against WoSt, RWoS,
BVC, and MVC under equal-time and progressive settings.
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Fig. 7. Computation time depends on both the number of cache records
and the walks per record used for coefficient estimation. For equal runtime,
it is generally better to use fewer records with more walks (left) than more
records with fewer walks (right).

4.1 Implementation
We implemented our method on the CPU using the Zombie1 library
with single-precision floating point arithmetic [Sawhney and Miller
2023]. The method is straightforward to implement and deploy,
functioning as a meta-integrator over the underlying WoSt solver.
Pseudocode is provided in Algorithms 1–3.

We use a multi-reference octree [Pharr and Humphreys 2010] for
efficient cache lookups. During initial cache population, concurrent
access to the octree is protected by a reader–writer lock. The re-
finement pass, however, is lock-free: we require only read-access to
the old records, while each new set of cache coefficients is updated
concurrently and independently.

4.2 Biased vs Unbiased Caching
In Fig. 5, we compare biased harmonic caching (series truncation
at 	 = 10) with an unbiased variant using a prefix-sum estimator
and stochastic truncation drawn from a geometric distribution with
mean 〈	〉 = 10. In the unbiased case, we apply the same stochastic
truncation order across all evaluation points within a cache record,
trading reduced variance for additional correlation. In the biased
case, truncation bias becomesmore pronounced as � → � (see Fig. 3).
Nevertheless, even in the worst-case scenario—reconstructing up to
the largest ball rather than a conservative subregion (� < 0.9�)—the
biased approach remains preferable due to its lower variance and
fewer correlation artifacts. Consequently, we adopt the biased har-
monic caching algorithm with series truncation as our default strat-
egy for the remaining experiments (referred to simply as HC). Misso
et al. [2022] may provide a useful pathway for deriving variance-
optimal unbiased series reconstructions in the future.

4.3 Parameter Ablation
Our biased caching algorithm has three main parameters: 	,�min,
and �. For the Poisson equation, an additional parameter� controls
the number of independent source samples used in reconstruction.
Increasing the truncation order 	 generally reduces error, but

also requires estimating, storing, and evaluating more Fourier coef-
ficients, with diminishing returns (Fig. 6, top row). We found that

1Our implementation is available at https://github.com/rohan-sawhney/zombie.

B V C

H C ( Ou r s )

EqualTim
e

M V C

R W o S

� = 2 010
S o l u t i o n / D i r i c h l e t

B C ( D i r i c h l e t )

S o l u t i o n P l a n e

Fig. 8. Harmonic caching shows fewer correlation artifacts in the interior
than RWoS (top-left inset) and less noise near the boundary than MVC
(bottom-left inset). Unlike BVC (top-right inset), it also free of singularity
issues near the boundary. Results shown for a screened 3D Laplace problem.

	 = 10 strikes a good balance between accuracy and cost, and use
this value as the default unless stated otherwise.
Increasing �min produces more cache records and an approx-

imately linear rise in computation time. A denser cache allows
evaluation points to draw higher-quality contributions from nearby
records, which carry greater weight and thus reduce overall recon-
struction error (Fig. 6, middle row).

Increasing � raises the number of walks used to estimate Fourier
coefficients, reducing their noise and thereby lowering reconstruc-
tion error (Fig. 6, bottom row).
Given a fixed time budget, �min and � must be balanced. As

shown in Fig. 7, allocating more walks per cache record with a
sparser cache generally yields better results than the reverse.

4.4 Comparison with Walk on Stars
We evaluate harmonic caching againstWoSt on 2D and 3D (screened)
Laplace equations under various boundary conditions (Figs. 1, 9
and 15). Performance is strongly influenced by boundary type: pure
Dirichlet problems generally produce shorter WoSt walks, while
Neumann or Robin problems require longer walks and thus exhibit
higher variance. As shown in Fig. 10, harmonic caching achieves
the lowest error across all test models and runtimes in Fig. 9. For the
Neumann-dominated 3D problem in Fig. 15, the underlying WoSt
estimator, and thus the Fourier coefficients, are considerably noisier,
yet harmonic caching still provides a clear reduction in error.

In Fig. 1, we further demonstrate harmonic caching on a 3D ther-
mal simulation of a turkey leg, represented as a triangle mesh with
over one million primitives. Robin boundary conditions are derived
by simulating radiative heat transfer via ray tracing, while convec-
tive transfer outside the turkey leg is ignored. Solving the 3D Laplace
equation yields the equilibrium temperature distribution across sev-
eral vertical slices of the leg (Fig. 14). Although WoSt is well-suited
to this problem—providing localized temperature previews without
meshing the complex domain—it suffers from significant noise. Har-
monic caching reduces this noise substantially, producing smoother
and more accurate reconstructions under equal-time comparisons
and achieving 1–3 orders of magnitude lower error than WoSt.
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relMSE 1.15983 0.85186 0.38146 0.04977 0.00119

Reference WoSt RWoS BVC MVC HC(Ours)

0.10881 0.14397 0.07309 0.02071 0.02073 0.00219 0.00885 0.01545 0.00013 0.00011

(a) Engine (𝛼 = 0): pure Dirichlet BC.

relMSE 1.32018 0.70749 0.17069 0.0156 0.00036

Reference WoSt RWoS BVC MVC HC(Ours)

2.78968 1.53409 4.28392 0.48493 0.01004 0.03636 0.00337 0.00635 0.0003 0.00027

(b) Gear (𝛼 = 0): mixed Dirichlet and Neumann BC.

relMSE 1.1687 0.09922 4.28075 0.00447 0.00044

Reference WoSt RWoS BVC MVC HC(Ours)

0.841 2.73567 0.40064 0.07755 0.52637 2.53558 0.01677 0.00027 0.00023 9e-05

(c) Teapot (𝛼 = 0): mixed Dirichlet and Robin BC.

relMSE 0.48206 0.60901 0.33031 0.01134 0.00044

Reference WoSt RWoS BVC MVC HC(Ours)

0.26093 2.14207 0.57135 3.08027 0.04534 0.16083 0.02337 0.00062 0.00028 0.00022

(d) Screened Teapot (𝛼 = 20): mixed Dirichlet and Robin BC.

Fig. 9. Comparison of variance-reduction techniques for solving a Laplace equation across diverse 2D domains and boundary conditions under equal-time
constraints. Dirichlet boundaries are shown in black, Neumann in green, and Robin in violet. For each result, we show the solution (top) and a zoomed-in error
region (bottom), using the inferno and viridis colormaps, respectively. Relative MSE values (scaled by 100) are reported with 1% outlier rejection for both the
full image and the inset. Reference solutions are computed with WoSt using 6M walks per evaluation point. Harmonic caching consistently achieves lower
error, strongly suppressing Monte Carlo noise and correlation artifacts compared to prior approaches.
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Fig. 10. We compare the convergence of WoSt, RWoS, BVC, MVC, and harmonic caching on the 2D scenes (� = 0) from Fig. 9. Each algorithm runs for about
30 minutes, progressively improving as more samples are taken, with relative MSE reported at each iteration. Unlike Fig. 9, which compares performance at
equal time, this plot shows the full convergence history. HC consistently achieves the lowest error across all test scenes, independent of runtime.

4.5 Comparison with Reverse Walk on Spheres
RWoS launches walks from the boundary and interior sources, splat-
ting contributions to multiple evaluation points at each walk step
while estimating the Green’s function of the domain [Miller et al.
2024b; Qi et al. 2022]. This reverse formulation is particularly ef-
fective for equations with localized delta sources and boundary
conditions. However, as shown in Fig. 11, harmonic caching can
outperform RWoS even in this favorable setting, since integrating
the off-centered Green’s function against delta sources admits an
analytic solution that avoids Monte Carlo sampling.

H C C a c h e

R O I

Unlike harmonic caching, RWoS is not
output-sensitive, as reverse walks are not
guided toward regions of interest. In the 3D
domain shown in the inset, the star-shaped
regions formed by reverse walks often fail to
intersect the planar ROI, yielding few effec-
tive splats and stronger correlation artifacts.
In contrast, although harmonic caching per-
forms walks over the entire domain, cache
records are generated only within the ROI.

RWoS also suffers from additional bias under Dirichlet and mixed
boundary conditions due to its finite-difference approximation of the
Poisson kernel [Qi et al. 2022, Section 5.3]. Moreover, performance
degrades in domains dominated by reflecting boundaries, since
each reverse walk step requires a ray–intersection test to avoid
splatting into disjoint (invisible) parts of the domain within star-
shaped regions [Sawhney et al. 2023, Fig. 10]. As a result, under
equal-time comparisons in Neumann-dominated problems (Fig. 15),
RWoS exhibits more severe correlation artifacts than other caching
algorithms due to insufficient walks.

4.6 Comparison with Boundary Value Caching
To reduce redundant computation and suppress noise in WoSt,
BVC [Miller et al. 2023] first estimates solution values � and normal
derivatives ��/�� at random boundary points using WoSt. These

R e f e r e n c eR e f e r e n c e

R W o S H a r m o n i c C a c h i n g ( O u r s )

( E q u a l T i m e )
0 . 0 1

1 1 . 7

0
E r r o r

S o l u t i o n

D i r i c h l e t ( Z e r o )

Fig. 11. Comparison of reverse walk on spheres and harmonic caching for
a Poisson equation with sparse source terms. The scene is intentionally
designed to favor RWoS: the source consists of three Dirac delta spikes with
zero Dirichlet boundary conditions. Unlike WoS, RWoS estimates the solu-
tion by launching walks directly from the source locations, yet our method
still achieves lower error at equal time. Because the Green’s function inte-
gral over a delta function is exact, HC incurs no error in source integration
here—only the usual error from constructing the Fourier representation of
the unknown boundary solution remains.

cached values are then used to evaluate a boundary integral equation
for the PDE solution at interior points via Monte Carlo.

BVC, however, suffers from artifacts caused by singularities in the
free-space Green’s function and Poisson kernel (Fig. 8). Estimating
��/�� on Dirichlet boundaries is particularly challenging: Miller
et al. [2023] propose offsetting the boundary and using WoSt to
estimate both � and ��/��, but obtaining noise-free gradients this
way requires an excessive number of samples. Moreover, because
BVC relies on a boundary integral equationwith a signed integrand—
even when the solution itself is strictly positive— it can reconstruct
negative solution values when only a limited number of cache points
are used, sometimes yielding higher relative MSE than the baseline
WoSt estimator (Figs. 9c and 12).
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relMSE 0.252 (1.00x) 10.378 (41.18x) 3.739 (14.84x) 0.033 (0.13x) 0.018 (0.07x)

WoSt RWoS BVC MVC HC(Ours)

0.1131 0.0290 2.4034 0.0302 5.2314 0.0750 0.0032 0.0046 0.0034 0.0009

S e t u p

S o u r c e / B o u n d a r y V a l u e s / S o l u t i o n

E r r or

Fig. 12. For general Poisson problems, error in harmonic caching is often dominated by regions near the source term, due to the off-centered Green’s function
in the Monte Carlo estimator (Eq. (10)). However, allocating additional source samples is relatively inexpensive since the source term is not recursively defined.

Nevertheless, BVC can outperform our method in practice for
Neumann boundary conditions, where ��/�� is prescribed and need
not be estimated. With non-smooth Neumann data, WoSt suffers
from high variance near the boundary due to long reflecting walks
and signed contributions, which introduce noise into the harmonic
coefficients of nearby cache records. While BVC still requires esti-
mating � on Neumann boundaries, its estimates can benefit from
splatted contributions across the entire boundary, whereas harmonic
caching may lack sufficient overlapping records near the boundary
and too few walks per record to estimate coefficients robustly. As a
result, harmonic caching requires a large � and dense cache records,
degrading performance. However, as shown in Fig. 9b and Fig. 15
(red zoomed-in crop), our method still achieves the lowest error
near smooth Neumann data.

4.7 Comparison with Mean Value Caching
M V C C a c h e R e c

H a r m o n i c C a c h e R e c

E v a l P t
We implemented MVC [Bakbouk and
Peers 2023] as a similar meta-integrator.
In the first pass, WoSt is used to esti-
mate the solution at a set of stratified
cache points. At each evaluation point,
all cached estimates within the largest
ball are then averaged using the volumet-
ric mean value property (Appendix E).
MVC suffers from strong correlation arti-
facts near the boundary (see the cropped
insets in Figs. 8 and 9) because ball radii
are small and few cache points can be
gathered there (inset, top). This remains
true even when employing the recursive reuse passes of Bakbouk
and Peers [2023] to share cached information more broadly across
the domain (Fig. 13). In contrast, our algorithm is less sensitive to
the proximity of evaluation points to the boundary, since distant
cache records can still contribute (inset, bottom).

MVC and HC share a key similarity: both rely on forward walks
(in contrast to the reverse walks from Sec. 4.5) and employ a more
localized caching strategy compared to BVC and RWoS. As a result,
when estimates of� (�) inside the domain are very noisy, these meth-
ods can become more susceptible to correlation artifacts (Fig. 15).

4.8 Progressive Evaluation
We implemented progressive versions of the caching algorithms and
evaluated their convergence in Fig. 10 for the models in Fig. 9. Each
progressive algorithm computes a running average over multiple it-
erations, starting each iteration with an empty cache. For harmonic
caching, we keep all parameters except�min fixed across iterations,
which we increase by 0.5 per iteration (starting from 0) to reduce
truncation bias from the series expansion. Relative MSE converges
at the expected O(
 −1) rate for WoSt, and harmonic caching con-
sistently achieves the lowest error across the full 30-minute runtime.
For the 2D Gear and Teapot setups, BVC and RWoS sometimes incur
higher error than WoSt, likely due to stronger correlation artifacts
and singularity issues that inflate the reported relative MSE.

5 Conclusion and Future Work
We introduced an efficient, easy-to-implement caching algorithm
for WoSt that leverages local harmonic series expansions to reduce
variance. The method applies to second-order linear elliptic PDEs
with Dirichlet, Neumann, Robin, and mixed boundary conditions.
By truncating the expansion at low orders, we obtain a practical
reconstruction scheme with few artifacts, and we further show how
stochastic truncation via Russian roulette can eliminate the result-
ing bias. Our approach achieves orders-of-magnitude lower error
compared to WoSt, while generally outperforming existing caching
algorithms in both accuracy and robustness. In addition to lower er-
ror and fewer correlation artifacts, it retains key advantages of prior
methods, including progressiveness (all), output sensitivity (MVC/B-
VC/ours), singularity-free estimates (MVC/ours), and resilience to
domain mesh quality (compared to grid-based PDE solvers).

Limitations and Future Work. In this paper, we adopt WoSt as
the underlying pointwise estimator, which can suffer from high
variance in problems with large reflecting Neumann boundaries; as
shown in Fig. 15, such variance reduces the efficiency of our method.
Combining harmonic caching with complementary strategies such
as BVC, MVC, RWoS, or path-guided WoSt estimators [Huang et al.
2025] could further reduce error and correlation artifacts. A key
limitation of harmonic caching is that it reduces error only within
the domain, not directly on the boundary—a restriction shared by
all existing caching-based variance-reduction methods for WoSt.
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relMSE 3.36628 2.28244 1.19948 1.16623

Reference MVC without Reuse (4.7s) MVC with Reuse (5.0s) HC without Refinement (3.7s) HC with Refinement (4.0s)

2.86447 5.00899 1.3507 3.2702 0.75664 1.67122 0.75583 1.6763

Fig. 13. Reusing the harmonic cache to recompute Fourier coefficients in a refinement pass reduces correlation artifacts and lowers error. This approach
resembles the recursive reuse pass in mean value caching but achieves higher accuracy, particularly near boundaries.

Reference WoSt RWoS BVC MVC HC(Ours)

relMSE 0.280(1.00×) 0.226(0.81×) 8.037(28.67×) 0.053(0.19×) 0.009(0.03×)

Reference WoSt RWoS BVC MVC HC(Ours)

relMSE 0.206(1.00×) 0.225(1.09×) 4.931(23.91×) 0.050(0.24×) 0.005(0.02×)

Reference WoSt RWoS BVC MVC HC(Ours)

relMSE 0.044(1.00×) 0.055(1.25×) 0.701(16.06×) 0.014(0.33×) 0.001(0.02×)

Fig. 14. We show results of the 3D Laplace problem from Fig. 1 on three additional slice planes, comparing harmonic caching with state-of-the-art variance-
reduction algorithms for WoSt under an equal time budget (~1500s) and reporting relative MSE with 1% outlier rejection. The results demonstrate that
harmonic caching is competitive, producing smooth reconstructions with the lowest error.

On the theoretical side, our current treatment of Neumann and
Robin boundary conditions confines reconstruction to the largest
inscribed ball. Extending the reconstruction to general star-shaped
regions could significantly reduce the number of required cache
records, but poses substantial challenges, namely constructing series
expansions for such regions under suitable parametrizations while
simultaneously enforcing boundary conditions.

Harmonic caching is effective for Poisson equations with sparse
and delta source terms (Fig. 11). However, for problems with smooth,

continuously distributed sources, as shown in Fig. 12, MVC can
outperform harmonic caching (red inset). This advantage arises
because Bakbouk and Peers [2023, Section 8] derived a volumetric
mean value property that enables unbiased reuse of source samples.
In contrast, our method relies on Monte Carlo integration of the
off-centered Green’s function without importance sampling, which
can lead to higher variance in practice. Extending the harmonic
series expansion to incorporate the source term may further reduce
variance, which we leave for future work.
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14227.0 273.821 3.66545 116.212 38.7730

Reference WoSt RWoS BVC MVC HC(Ours)

679598 0.86045 41482.5 0.19013 168.051 0.01111 13332.4 0.05243 3192.49 0.00905

- 1

1

S o l u t i o n P l a n e

D i r i c h l e t
N e u m a n n

Fig. 15. For non-smooth Neumann boundary conditions, harmonic caching can exhibit stronger correlation artifacts than BVC; as shown in the red inset,
noisy estimates from the underlying WoSt solver can introduce significant error into the Fourier coefficients. However, our method achieves the lowest error in
regions near smooth Neumann boundaries (blue inset).

Finally, while our method applies to the Laplace and screened
Poisson equations, extending it to variable-coefficient PDEs [Sawh-
ney et al. 2022] remains an interesting direction for future work.
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A Pseudocode
Pseudocode for harmonic caching is provided in Algorithms 1–3.

Algorithm 1 Harmonic caching algorithm for WoSt
Input: evalPts (evaluation points over ROI)
Output: updated solution in evalPts

1: function HarmonicCachingForPoissonEqation(evalPts)
2: 𝑆 ← NULL ⊲ Initialize an empty cache 𝑆
3: ⊲ Cache Population Pass ⊳

4: LazyCacheUpdate(evalPts, 𝑆, False)
5: ⊲ Additional Refinement Pass ⊳

6: 𝑆R ← 𝑆 ⊲ Deep copy of the cache
7: for each HarmonicCacheRecord 𝑠 in 𝑆R do
8: 𝑠 .𝑎0, · · · , 𝑠 .𝑏𝐿 ← 0 ⊲ Reset coefficients
9: 𝑠 .Project(𝑠 .p, 𝑆) ⊲ Enable cache lookup
10: ⊲ Reconstruction Pass ⊳

11: LazyCacheUpdate(evalPts, 𝑆R,True)

B Harmonic Series Expansion in 3D
Appendix C derives the harmonic series expansion of the homoge-
neous screened Poisson equation in spherical coordinates:

𝑢 (𝑟, 𝜃, 𝜙) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑎𝑚
𝑙
R𝑙,3D𝛼 (𝑟, 𝑅) 𝑦𝑚

𝑙
(𝜃, 𝜙), (11)

where R𝑙,3D𝛼 (𝑟, 𝑅) is the corresponding radial basis function in 3D:

R𝑙,3D𝛼 (𝑟, 𝑅) =

(𝑟/𝑅)𝑙 if 𝛼 = 0,
𝑖𝑙 (
√
𝛼𝑟 )

𝑖𝑙 (
√
𝛼𝑅) if 𝛼 > 0,

(12)

with 𝑖𝑙 denoting the modified spherical Bessel function of the first
kind. The coefficients 𝑎𝑚

𝑙
represent the spherical harmonic decom-

position of the boundary function 𝑢 (𝑅,𝜔). They are independent of
𝑟 and indexed by the spherical harmonics of degree 𝑙 and order𝑚:

𝑎𝑚
𝑙

=

∫
𝑆2
𝑢 (𝑅,𝜔)𝑦𝑚

𝑙
(𝜔) d𝜔. (13)

The spherical harmonics 𝑦𝑚
𝑙
(𝜃, 𝜙) are defined as:

𝑦𝑚
𝑙
(𝜃, 𝜙) =

{
𝐾𝑚
𝑙
𝑃
|𝑚 |
𝑙
(cos𝜃 ) cos( |𝑚 |𝜙) if 𝑚 ≥ 0,

𝐾𝑚
𝑙
𝑃
|𝑚 |
𝑙
(cos𝜃 ) sin( |𝑚 |𝜙) if 𝑚 < 0,

(14)

where 𝑃𝑚
𝑙

are the associated Legendre polynomials and 𝐾𝑚
𝑙

are
normalization constants:

𝐾𝑚
𝑙

=

√︄
(2𝑙 + 1)
4𝜋

(𝑙 − |𝑚 |)!
(𝑙 + |𝑚 |)! . (15)
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Algorithm 2 Harmonic Cache Record in 2D
1: class HarmonicCacheRecord
2: attributes:
3: p← 0 ⊲ Cache center
4: 𝑅 ← 0 ⊲ Closest distance to boundary
5: 𝑎0, · · · , 𝑎𝐿, 𝑏0, · · · , 𝑏𝐿 ← 0 ⊲ Fourier coefficients

Input: p0 (cache center), 𝑆 (cache used for reconstruction)
Output: Updated cache record, solution estimate at p0

6: function project(p0, 𝑆)
7: p← p0
8: 𝑅 ←QueryLargestSphere(p)
9: 𝑁 ← 𝜆𝑅 ⊲ Adaptive number of walks per record
10: for 𝑖 = 1 to 𝑁 do
11: Θ𝑖 ∼ 𝑝Θ𝑖 ⊲ Stratified sampling over unit circle
12: 𝜔 ← (cosΘ𝑖 , sinΘ𝑖 )
13: p1 ← p0 + 𝑅 · 𝜔
14: 𝑢 ← 0
15: if 𝑆 ≠ NULL then
16: 𝑢 ← Reconstruct(p1) ⊲ Used in refinement pass
17: else
18: 𝑢 ←WalkOnStars(p1) ⊲ Used in first population
19: 𝑎0 ← 𝑎0 + 1

𝑁
𝑢̂

𝑝Θ𝑖 2𝜋
20: for 𝑙 = 1 to 𝐿 do
21: 𝑎𝑙 ← 𝑎𝑙 + 1

𝑁
𝑢̂ cos 𝑙Θ𝑖

𝑝Θ𝑖 2𝜋𝑅𝑙

22: 𝑏𝑙 ← 𝑏𝑙 + 1
𝑁

𝑢̂ sin 𝑙Θ𝑖

𝑝Θ𝑖 2𝜋𝑅𝑙 ⊲ Eq. (7)
23: 𝑢0 ← 𝑎0 ⊲ Mean value property
24: ⊲ Account for the source term in standard WoS ⊳

25: for 𝑖 = 1 to𝑀 do
26: y ∼ 𝑝𝐵 (p,𝑅) ⊲ Stratified sampling over disk

27: 𝑢0 ← 𝑢0 + 1
𝑀

𝑓 (𝑦)𝐺𝐵 (p,𝑅) (p,y)
𝑝𝐵 (p,𝑅)

28: return 𝑢0
Input: p𝑥 (evaluation point for reconstruction)
Output: Solution 𝑢 reconstructed at p𝑥 with weight𝑤

29: function reconstruct(p𝑥 )
30: 𝜃 ← atan2(p𝑥 .𝑦 − p.𝑦, p𝑥 .𝑥 − p.𝑥)
31: 𝑟 ← |p𝑥 − p|
32: 𝑑 ← 1 − 𝑟

𝑅

33: 𝑤 ← 3𝑑2 − 2𝑑3 ⊲ Weighting kernel
34: ⊲ Reconstruct solution via harmonic series expansion ⊳

35: 𝑢 ← 𝑎0
36: for 𝑙 = 1 to 𝐿 do
37: 𝑢 ← 𝑢 + ( 𝑟

𝑅
)𝑙 (𝑎𝑙 cos 𝑙𝜃 + 𝑏𝑙 sin 𝑙𝜃 ) ⊲ Eq. (2)

38: for 𝑖 = 1 to𝑀 do
39: y ∼ 𝑝𝐵 (p,𝑅) ⊲ Stratified sampling over disk

40: 𝑢 ← 𝑢 + 1
𝑀

𝑓 (p𝑥 )𝐺𝐵 (p,𝑅) (p𝑥 ,y)
𝑝𝐵 (p)

⊲ Eq. (10)
41: 𝑢 ← 𝑢𝑤 ⊲ Eq. (8)
42: return 𝑢,𝑤

Algorithm 3 Populate cache on-the-fly and update solution
Input: evalPts (evaluation points ), S (harmonic cache),

updateSolution (bool)
Output: Populate S, and update solution if requested

1: function LazyCacheUpdate(evalPts, S, updateSolution)
2: for p in evalPts do
3: 𝑢sum ← 0
4: 𝑤sum ← 0
5: for each HarmonicCacheRecord 𝑠 in S do
6: if |𝑠 .p − p| ≥ 0.9𝑠 .𝑅 then
7: continue ⊲ Skip records outside 0.9𝑅𝜕Ω (p)
8: ⊲ Reconstruct solution from current cache record ⊳

9: 𝑢,𝑤 ← 𝑠 .Reconstruct(p)
10: 𝑢sum ← 𝑢sum + 𝑢
11: 𝑤sum ← 𝑤sum +𝑤
12: if 𝑤sum ≤ 𝑤min then
13: HarmonicCacheRecord s← NULL
14: 𝑢 ← 𝑠 .Project(p,NULL)
15: ⊲ Collect solution at the cache center ⊳

16: 𝑢sum ← 𝑢sum + 𝑢
17: 𝑤sum ← 𝑤sum + 1 ⊲ weighting kernel at 0 is 1
18: 𝑆.add(𝑠)
19: if updateSolution then
20: updateSolution(p, 𝑢̂sum

𝑤sum
) ⊲ Eq. (8)

C Derivation of the 3D Harmonic Series Expansion
We derive the 3D harmonic series expansion in Eq. (11) for the
homogeneous screened Poisson equation using the Fourier method
(separation of variables). For the classical case 𝛼 = 0, we refer to
Choksi [2022] for a detailed derivation.

The screened Laplace equation in spherical coordinates is:

1
𝑟2

𝜕

𝜕𝑟

(
𝑟2
𝜕𝑢

𝜕𝑟

)
+ 1
𝑟2 sin𝜃

𝜕

𝜕𝜃

(
sin𝜃 𝜕𝑢

𝜕𝜃

)
+ 1
𝑟2 sin2 𝜃

𝜕2𝑢

𝜕𝜙2
− 𝛼𝑢 = 0.

(16)

Using separation of variables with 𝑢 (𝑟, 𝜃, 𝜙) = 𝑅(𝑟 )Θ(𝜃 )Φ(𝜙), sub-
stitution into Eq. (16) yields:

1
Θ sin𝜃

d
d𝜃

(
sin𝜃 dΘd𝜃

)
+ 1
Φ sin2 𝜃

d2Φ
d𝜙2

= − 1
𝑅

d
d𝑟

(
𝑟2

d𝑅
d𝑟

)
+ 𝛼𝑟2,

(17)

which holds if both sides equal a separation constant 𝜆. Equating
the angular components, we have:

1
Θ sin𝜃

d
d𝜃

(
sin𝜃 dΘd𝜃

)
+ 1
Φ sin2 𝜃

d2Φ
d𝜙2

= −𝜆, (18)

which is identical to the Laplace case [Choksi 2022]. The solutions
to this equation are:

Φ(𝜙) = ei𝑚𝜙 (19)
Θ(𝜃 ) = 𝑃𝑚

𝑙
(cos𝜃 ), (20)

where 𝑃𝑚
𝑙

are the associated Legendre polynomials, indexed by
degree 𝑙 and order𝑚 (|𝑚 | ≤ 𝑙). The separation constant satisfies
𝜆 = 𝑙 (𝑙 + 1).
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The radial equation from Eq. (17) becomes:
1
𝑅

d
d𝑟

(
𝑟2

d𝑅
d𝑟

)
− 𝛼𝑟2 − 𝜆 = 0. (21)

With the substitutions 𝑥 :=
√
𝛼𝑟 and 𝑓 (𝑥) := 𝑅(𝑟 ), it simplifies to:

𝑥2 𝑓 ′′ (𝑥) + 2𝑥 𝑓 ′ (𝑥) − (𝑥2 + 𝑙 (𝑙 + 1)) 𝑓 (𝑥) = 0, (22)
which is known as the modified spherical Bessel differential equa-
tion. Its solutions are the modified spherical Bessel functions 𝑖𝑙 (𝑥)
and 𝑘𝑙 (𝑥). Requiring finiteness at 𝑟 = 0 excludes 𝑘𝑙 (𝑥), leaving
𝑅(𝑟 ) = 𝑖𝑙 (𝛼𝑟 ).

Finally, the general solution of Eq. (16) is given by superposition:

𝑢 (𝑟, 𝜃, 𝜙) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑎𝑚
𝑙
𝑖𝑙 (
√
𝛼𝑟 )𝑦𝑚

𝑙
(𝜃, 𝜙), (23)

where 𝑦𝑚
𝑙

are spherical harmonics defined in Eq. (14), and 𝑎𝑚
𝑙

are
spherical harmonic coefficients. To restrict the expansion to a ball
of radius 𝑅, we introduce the radial functions R𝑙,3D𝛼 (𝑟, 𝑅):

𝑢 (𝑟, 𝜃, 𝜙) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑎𝑚
𝑙
R𝑙,3D𝛼 (𝑟, 𝑅) 𝑦𝑚

𝑙
(𝜃, 𝜙). (24)

Matching 𝑢 (𝑅, 𝜃, 𝜙) on the sphere with spherical harmonics yields
the coefficients 𝑎𝑚

𝑙
as given in Eq. (13).

D Green’s Functions
For a Poisson equation, the off-centered Green’s functions in 2D
and 3D for a ball centered at 𝑐 with radius 𝑅 are:

𝐺2D (𝑥,𝑦) = 1
2𝜋 log

(
𝑅2 − ⟨𝑥 − 𝑐, 𝑦 − 𝑐⟩

𝑅𝑟

)
, (25)

𝐺3D (𝑥,𝑦) = 1
4𝜋

(
1
𝑟
− 𝑅

𝑅2 − ⟨𝑥 − 𝑐, 𝑦 − 𝑐⟩

)
, (26)

where 𝑟 := ∥𝑦−𝑥 ∥ and ⟨·, ·⟩ denotes the dot product. For the screened
case, see Sawhney et al. [2022, Eq. 5, Supplemental].

E Volume Mean Value Property with Screening
We extend the volume mean value property of Bakbouk and Peers
[2023] to handle non-zero screening coefficients 𝛼 > 0, a result we
use in Fig. 8. The derivation follows directly from the classical case
𝛼 = 0, and we summarize the results here. In this case, the screened
solution satisfies the following mean value property:

𝑢 (𝑥) = 𝐶

|𝐵(𝑥) |

∫
𝐵 (𝑥 )

𝑢 (𝑦)d𝑦, (27)

where |𝐵(𝑥) | denotes the area (in 2D) or volume (in 3D) of a disk or
ball of radius 𝑅, and 𝐶 is a normalization factor:

𝐶2D := 𝑅
√
𝛼

2𝐼1 (𝑅
√
𝛼)

and 𝐶3D := (𝑅
√
𝛼)3

3(𝑅
√
𝛼 cosh (𝑅

√
𝛼) − sinh (𝑅

√
𝛼))

,

(28)
with 𝐼1 denoting the modified Bessel function of the first kind.
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