
Monte Carlo Geometry Processing:
A Grid-Free Approach to PDE-Based Methods on Volumetric Domains

ROHAN SAWHNEY and KEENAN CRANE, Carnegie Mellon University

Fig. 1. Real-world geometry has not only rich surface detail (left) but also intricate internal structure (center). On such domains, FEM-based geometric
algorithms struggle to mesh, setup, and solve PDEs—in this case taking more than 14 hours and 30GB of memory just for a basic Poisson equation. Our Monte
Carlo solver uses about 1GB of memory and takes less than a minute to provide a preview (center right) that can then be progressively refined (far right).
[Boundary mesh of Fijian strumigenys FJ13 used courtesy of the Economo Lab at OIST.]

This paper explores how core problems in PDE-based geometry processing
can be efficiently and reliably solved via grid-free Monte Carlo methods.
Modern geometric algorithms often need to solve Poisson-like equations on
geometrically intricate domains. Conventional methods most often mesh
the domain, which is both challenging and expensive for geometry with
fine details or imperfections (holes, self-intersections, etc.). In contrast, grid-
free Monte Carlo methods avoid mesh generation entirely, and instead just
evaluate closest point queries. They hence do not discretize space, time,
nor even function spaces, and provide the exact solution (in expectation)
even on extremely challenging models. More broadly, they share many
benefits with Monte Carlo methods from photorealistic rendering: excellent
scaling, trivial parallel implementation, view-dependent evaluation, and the
ability to work with any kind of geometry (including implicit or procedural
descriptions). We develop a complete “black box” solver that encompasses
integration, variance reduction, and visualization, and explore how it can be
used for various geometry processing tasks. In particular, we consider several
fundamental linear elliptic PDEs with constant coefficients on solid regions
of Rn . Overall we find that Monte Carlo methods significantly broaden the
horizons of geometry processing, since they easily handle problems of size
and complexity that are essentially hopeless for conventional methods.

CCS Concepts: • Computing methodologies → Shape analysis.

Additional Key Words and Phrases: numerical methods, stochastic solvers

Authors’ address: Rohan Sawhney; Keenan Crane, Carnegie Mellon University, 5000
Forbes Ave, Pittsburgh, PA, 15213.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
0730-0301/2020/7-ART123
https://doi.org/10.1145/3386569.3392374

ACM Reference Format:
Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing:
A Grid-Free Approach to PDE-Based Methods on Volumetric Domains. ACM
Trans. Graph. 39, 4, Article 123 (July 2020), 18 pages. https://doi.org/10.1145/
3386569.3392374

1 INTRODUCTION
The complexity of geometric models has increased dramatically in
recent years, but is still far from matching the complexity found in
nature—consider, for instance, detailed microstructures that give
rise to physical or biological behavior (Fig. 1). PDE-based methods
provide powerful tools for processing and analyzing such data, but
have not yet reached a point where algorithms “just work”: even
basic tasks still entail careful preprocessing or parameter tuning, and
robust algorithms can exhibit poor scaling in time ormemory. Monte
Carlo methods provide new opportunities for geometry processing,
making a sharp break with traditional finite element methods (FEM).
In particular, by avoiding the daunting challenge of mesh generation
they offer a framework that is highly scalable, parallelizable, and
numerically robust, and significantly expands the kind of geometry
that can be used in PDE-based algorithms.

Photorealistic rendering experienced an analogous development
around the 1990s: finite element radiosity [Goral et al. 1984] gave
way to Monte Carlo integration of the light transport equation [Ka-
jiya 1986], for reasons that are nicely summarized by Wann Jensen
[2001, Chapter 1]. Although this shift was motivated in part by a
desire for more complex illumination, it has also made it possible
to work with scenes of extreme geometric complexity—modern ren-
derers handle trillions of effective polygons [Georgiev et al. 2018]
and, in stark contrast to FEM, yield high-quality results even for

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392374
https://doi.org/10.1145/3386569.3392374
https://doi.org/10.1145/3386569.3392374

123:2 • Sawhney and Crane

Implicit surfaces Booleans/CSG Low-quality polygon soup

m
es

h

im
plicit

mesh

Fig. 2. We can directly solve PDEs on boundary representations not handled by conventional solvers. Left: discontinuous boundary conditions on an implicit
surface are captured exactly, whereas FEM or BEM would need a fine mesh to approximate such features. Center: we avoid the daunting challenge of
explicit mesh booleans, and can in fact combine heterogeneous representations via constructive solid geometry (CSG). Right: as in rendering, we can compute
meaningful solutions for geometry with extremely poor element quality, which degrade gracefully even in the presence of significant noise.

low-quality polygon soup. Moreover, Monte Carlo rendering can
use rich geometric representations beyond polygonmeshes, since all
geometric evaluation boils down to simple ray intersection queries.
The methods described in this paper provide an analogous ap-

proach to geometry processing: ray intersection tests are replaced
by closest point queries, and recursive ray tracing is replaced by
the recursive walk on spheres (WoS) algorithm of Muller [1956], as
outlined in Sec. 2.2.1. This approach has a number of benefits:

• Geometric Flexibility. It works directly with polygonal
meshes, NURBS/subdivision surfaces, implicit surfaces, con-
structive solid geometry, etc. Procedural (e.g., instanced) ge-
ometry can be used without consuming significant memory.

• Geometric Robustness. Geometry need not be watertight,
manifold, orientable, nor free of self-intersections; no prepro-
cessing or tessellation/discretization is needed. Sharp edges,
small details, and thin features are exactly preserved.

• Scalability. The main cost is a bounding volume hierarchy
(BVH) for closest point queries, which exhibitsO(n logn) time
and memory complexity with respect to the size of the bound-
ary geometry, rather than an interior (volumetric) mesh.

• Parallelism. It is trivial to achieve near-perfect parallel scal-
ing, and many operations are easily vectorized.

• Correctness. Since there is no discretization of space, time,
nor function spaces, one obtains the exact solution in expec-
tation, i.e., error is due purely to variance in the Monte Carlo
estimator, and can be reduced by simply taking more samples.

• Adaptivity.Adaptive sampling akin to radiance caching [Ward
et al. 1988] significantly reduces cost in smooth regions; pro-
gressive sampling enables rapid previews of PDE solutions.

• Output Sensitivity. The solution can be evaluated at points
or regions of interest (e.g., a small window or a slice plane),
without having to first perform a global solve.

• Compatibility.Monte Carlo methods fit easily into the stan-
dard geometry processing pipeline, since they can be used as
“black box” solvers that return reliable and accurate solution
values at any given query point (e.g., at mesh vertices).

Monte Carlo methods are not, however, a silver bullet. On simple
domains with smooth boundary conditions FEM is quite mature and
hard to beat in terms of solve time; here Monte Carlo methods can be
slow to eliminate high-frequency noise (though see Sec. 5.2.4). For
more complex problems, however, end-to-end performance depends
on many factors beyond the core solve: mesh generation, parallel
scaling, visualization, etc. (see Sec. 7 for a more in-depth discussion).
It may also not be obvious how to formulate a Monte Carlo esti-
mator for a given PDE. For instance, WoS is not suited for PDEs
with variable coefficients, and we do not here consider Neumann
boundary conditions (needed for, e.g., linear elasticity). However,
WoS can be generalized far beyond the basic PDEs considered in this
paper, to include both linear and nonlinear elliptic, parabolic, and
hyperbolic equations [Bossy et al. 2015; Shakenov 2014; Pardoux
and Tang 1999]. Moreover, Monte Carlo methods for PDEs are far
broader than just WoS [Higham 2001; Kloeden and Platen 2013], and
the basic framework presented here can be enhanced significantly
by drawing on deep knowledge from fields like stochastic control,
mathematical finance, and Monte Carlo rendering (Sec. 8). On the
whole, Monte Carlo methods have some unique features that make
them well-suited to geometry processing, and fill a place in the
landscape that has not yet been well-explored.

1.1 Contributions
Our approach builds on grid-free Monte Carlo methods for PDEs,
which use closed-form distributions to exactly model large steps of
a continuous random process like Brownian motion. This type of
method has been used for specific problems in, e.g., molecular dy-
namics [Mascagni and Simonov 2004], integrated circuit design [Coz
and Iverson 1992], porous media [Hwang et al. 2000], and electrostat-
ics [Hwang and Mascagni 2004]. However, no general framework
has been developed for the types of problems arising in geometry
processing, since traditional applications of such methods need not
consider, e.g., defective or highly detailed geometry, derivative esti-
mation, or visualization of solutions. This paper develops a holistic
Monte Carlo framework for geometry processing based on linear
elliptic PDEs with constant coefficients on a volumetric domain, i.e.,
an n-dimensional solid region in Rn . In particular, we provide:

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

Monte Carlo Geometry Processing • 123:3

– a unified discussion of estimators for PDEs commonly used
in geometry processing algorithms (Sec. 2),

– strategies for estimating derivatives and standard differential
operators (Sec. 3),

– variance reduction strategies for PDE and derivative estima-
tors (Sec. 4),

– geometric representations that circumvent common meshing
/ preprocessing challenges (Sec. 5.1),

– visualization techniques for scalar- and vector-valued data
that significantly enhance performance (Sec. 5.2), and

– strategies for implementing core geometry processing algo-
rithms within the Monte Carlo framework (Sec. 6).

Our approach also connects to a large body of work on Monte
Carlo rendering [Dutre et al. 2006; Pharr et al. 2016]. From the PDE
point of view, the major difference is that the differential equation
governing radiative transfer is first order in space, whereas the PDEs
we seek to solve have second order, diffusive terms that demand
different numerical techniques. There are of course many parallels
between these problems from a mathematical, computational, and
system design point of view, which we explore throughout the paper.

2 PDE ESTIMATORS
We begin with estimators for some of the most fundamental PDEs
in geometry processing—in general, there are two complementary
points of view. One, based on potential theory, is to express the
solution as a recursive integral equation (akin to the rendering
equation of Kajiya [1986]), and apply Monte Carlo integration. The
other, based on stochastic calculus, is to express the solution in terms
of a random process, and use Monte Carlo to simulate random
walks. This duality is well-illustrated by the WoS algorithm for the
Laplace equation (Sec. 2.2), which is our starting point for all other
estimators. Whereas the potential theory viewpoint is often simpler
to understand, stochastic calculus provides sophisticated tools to
analyze and relate random processes to the integral formulation of
PDEs they model–we primarily consider the former in this paper,
though use results from the latter where necessary.

2.1 Background and Notation
2.1.1 Notation. For any region A ⊂ Rn , we use ∂A to denote its
boundary, |A| to denote its volume, and 𝒰(A) = 1/|A| to denote
the uniform probability density function on A. Throughout we use
Ω ⊂ Rn to denote the domain of interest, and B(x) to denote a ball
contained in Ω and centered around a point x . For a point x ∈ Ω,
we use x to denote the closest point on ∂Ω. Finally, we use ∆ to
denote the negative-semidefinite Laplace operator on Rn , and X · Y
to denote the standard dot product of vectors X ,Y ∈ Rn .

2.1.2 Monte Carlo Integration. To keep exposition self-contained
we recall some elementary facts about Monte Carlo integration; see
Pharr et al. [2016, Chapter 13] for a more thorough introduction.
The basic idea is that an integral can be estimated by sampling the
integrand at randomly-chosen points. More precisely, let f be an
(L1) integrable function on a domain Ω. Then the integral

I :=
∫
Ω
f (x) dx

Fig. 3. The walk on spheres algorithm repeatedly jumps to a random point
on the largest sphere centered at the current point xi , until it gets within ε
of the boundary. Since the largest sphere can be determined from a simple
closest point query, no spatial discretization is needed.

is equal to the expected value of the Monte Carlo estimator

FN := |Ω |
1
N

N∑
i=1

f (Xi), Xi ∼ 𝒰(Ω) (1)

where N is any positive integer, andXi ∼ 𝒰(Ω) indicates thatXi are
independent random samples drawn from the uniform distribution
on Ω. The error of FN is characterized by its variance: its expected
(squared) deviation from the true value I .

Importance Sampling. More generally, let p be any probability
distribution on Ω that is nonzero on the support of f . Then the
integral of f is equal to the expected value of the estimator

1
N

N∑
i=1

f (Xi)

p(Xi)
, Xi ∼ p. (2)

Typically, p is chosen to reduce the variance of the estimate by
focusing on “important” features in the integrand [Pharr et al. 2016,
Section 13.10]. For simplicity, our initial discussion considers only
the basic Monte Carlo estimator (Eqn. 1); importance sampling
strategies are discussed in Sec. 4.2.

2.1.3 PDE Estimation. The solution to a linear elliptic PDE can
be expressed as a linear combination of contributions from the
boundary term and the source term. Estimation of these two terms
is well-illustrated via the Laplace equation (Sec. 2.2) and Poisson
equation (Sec. 2.3), resp. One can then build on these estimators
to solve other common equations such as the screened Poisson
(Sec. 2.4) and biharmonic equations (Sec. 2.5).

2.2 Laplace Equation
Laplace equations are commonly used to interpolate given boundary
data д : ∂Ω → R (encoding, e.g., color or deformation) over the
interior of the domain. The solution u satisfies the PDE

∆u = 0 on Ω,
u = д on ∂Ω. (3)

These so-called harmonic functions have two important charac-
terizations, which are illustrated in Fig. 4:

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

123:4 • Sawhney and Crane

Kakutani’s Principle mean value property

Fig. 4. At any point x , the solution u to a Laplace problem is equal to
the average boundary value reached by random walkers (top left), and the
average value of u over a sphere ∂B(x) around x (top right). Bottom: both
quantities can be estimated by recursively sampling points x ′ on a sphere.

• Kakutani’s Principle [Kakutani 1944]. The solution value
u(x) at any point x ∈ Ω is equal to the expected value E[д(y)],
wherey ∈ ∂Ω is the first boundary point reached by a random
walk starting at x (more formally, a Wiener process).

• Mean Value Property [Axler et al. 2013, Chapter 1]. The
value of u at x equals the mean value of u over the boundary
of any ball B(x) ⊂ Ω:

u(x) =
1

|∂B(x)|

∫
∂B(x)

u(y) dy. (4)

2.2.1 Walk on Spheres Algorithm. Both characterizations suggest
algorithms for computing harmonic functions. One idea is to take
random steps on a grid, or finite steps in random directions, but
these strategies introduce spatial and temporal discretization (resp.).
An ingenious idea proposed by Muller [1956] is to instead take a
walk on spheres (WoS). By symmetry, a continuous random walk
starting at a point x0 is equally likely to exit any point on a sphere
around x0—independent of how long the walk takes, or where it
goes while inside the sphere. Hence, we get a statistically perfect
simulation by repeatedly jumping to a random point xk+1 uniformly
sampled from a sphere around the current point xk (Fig. 3). Once xk
is within a small distance ε > 0 of the domain boundary, we grab the
boundary value д(xk) at the closest point xk ∈ ∂Ω. Apart from a
negligible bias introduced by the ε-shell ∂Ωε (Sec. 6.1), the expected
value of this estimator is the exact value of u(x0), and variance can
be reduced by averaging the result of many walks.
The WoS algorithm can also be motivated by the mean value

property. At x0, we can approximate Eqn. 4 via one-point Monte
Carlo quadrature, i.e., by picking a random point x1 on ∂B(x) and
evaluating u(x1). Since u(x1) is also unknown, we recursively ap-
ply this procedure until we reach ∂Ωε , and again grab the closest
boundary value д(xk). The analogy from rendering is basic path
tracing, where a single Monte Carlo sample is used to recursively
estimate the incoming radiance until we hit a light source.

The finalMonte Carlo estimate foru(x0) is given by 1
N

∑N
i=1 û0(x0),

where û0 is the WoS estimator for the Laplace equation:

û0(xk) :=

{
д(xk), xk ∈ ∂Ωϵ

û0(xk+1), otherwise.
(5)

To achieve fast convergence, it usually makes sense to draw xk+1
from a uniform distribution on the largest sphere around xk , which
can be efficiently computed via closest point queries (Sec. 5.1). In
this case one can show that the number of steps needed to reach the
ε-shell ∂Ωε is typically O(log 1/ε) [Binder and Braverman 2012].

2.3 Poisson Equation

Fig. 5. A source term f can be ap-
proximated via a single random
sample yi at each step.

The Poisson equation, used for
tasks ranging from surface recon-
struction [Kazhdan et al. 2006] to
shape editing [Yu et al. 2004], intro-
duces a source term f : Ω → R:

∆u = f on Ω,
u = д on ∂Ω. (6)

The solution value at any point
x ∈ Ω can be expressed via another
recursive integral equation [Delau-
rentis and Romero 1990] which generalizes the mean value property:

u(x) =
1

|∂B(x)|

∫
∂B(x)

u(y)dy −

∫
B(x)

f (y)G(x ,y)dy. (7)

Here G is the harmonic Green’s function on the ball B(x) (and not
the Green’s function on Rn); see App. B.1. For each step of the walk,
we must now estimate the contribution of the source term. A simple
strategy is to just use a one-point Monte Carlo estimate [Elepov and
Mikhailov 1969], leading to a WoS estimator

ûf (xk) :=

{
д(xk), xk ∈ ∂Ωϵ

ûf (xk+1) − |B(xk)| f (yk)G(xk ,yk), otherwise.
(8)

At each step the sample point yk is drawn from the distribution
𝒰(B(xk)) on the largest solid ball around xk (Fig. 5). A proof that
this one-point estimator converges to the true value of u(x) can be
found in [Delaurentis and Romero 1990, Section II]; see also Fig. 15.

2.4 Screened Poisson Equation
Another common equation in geometry processing (used for, e.g.,
surface filtering [Chuang and Kazhdan 2011] and computing geo-
desic distance [Crane et al. 2017]) is the screened Poisson equation

∆u − cu = f on Ω,
u = д on ∂Ω, (9)

where c > 0 is a constant. The WoS estimator for this equation is
identical to Eqn. 8, except thatG is replaced by the Yukawa potential
Gc (App. B.2), and the value of ûf (xk+1) is weighted by a factor C
that depends on dimension (App. B.2.1).

2.5 Biharmonic Equation
Higher-order PDEs can be estimated by “nesting” lower-order es-
timators. For instance, the biharmonic equation, used in geometry
processing for, e.g., deformation [Jacobson et al. 2011] and shape
correspondence [Lipman et al. 2010], is given by the 4th-order PDE

∆2u = 0 on Ω,
u = д on ∂Ω,

∆u = h on ∂Ω.
(10)

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

Monte Carlo Geometry Processing • 123:5

To solve this equation via Monte Carlo, we can re-write it as a
system of two 2nd-order PDEs via the substitution v := ∆u:

∆u = v on Ω, ∆v = 0 on Ω,
u = д on ∂Ω, v = h on ∂Ω. (11)

To evaluate u at a point x0 we can apply the standard Poisson
estimator (Eqn. 8), using the Laplace estimator (Eqn. 5) to estimate
v(xk) at each step of the walk. However, this naïve strategy is quite
expensive since we now have to simulate a whole walk inside each
step—Sec. 4.3 describes a more efficient approach.

2.6 Exterior Problems
A nice feature of Monte Carlo is that estimators can easily be used to
solve PDEs on the domain exterior, i.e., the complement of Ω in Rn .
To do so, we just apply standard Russian roulette [Pharr et al. 2016,
Section 13.7] to terminate walks that wander far from the domain
boundary. Examples are shown in Fig. 2.

3 DERIVATIVE ESTIMATORS
Geometry processing often requires not only the solution to a PDE,
but also derivatives of that solution. Surprisingly little has been said
about estimating derivatives via WoS—to our knowledge, the only
such work is Elepov and Mikhailov [1969], which briefly discusses
the gradient but ignores other differential operators, higher-order
derivatives, and variance reduction strategies (Secs. 4.1.2 and 4.1.3).
We provide basic derivative estimators derived via potential theory
and the more general framework of Malliavin calculus [Bell 2012].

3.1 Gradient
As shown in App. A, the gradient of the so-
lution u to a Laplace equation (Eqn. 3) with
respect to the evaluation point x can be ex-
pressed via a mean value-like principle

∇u(x) =
1

|B(x)|

∫
∂B(x)

u(y)ν (y) dy, (12)

where for a ball of radius R, ν (y) := (y − x)/R is the outward unit
normal at y. A basic WoS estimator for ∇u is then

∇̂u0(x0) :=
n

R
û0(x1)ν (x1), x1 ∼ 𝒰(∂B(x0)), (13)

i.e., just sample a point x1 on a ball around x0, and multiply the
normal by the WoS estimate for u(x1) (Eqn. 5). The coefficient n/R
comes from the surface area to volume ratio for an n-dimensional
ball. Notice that estimating the gradient adds virtually no cost on top
of estimating the solution value at x0—just multiplying the initial
normal ν (x1) by the final boundary value д(xk).

In the case where we also have a nonzero source term f (Eqn. 6),
the gradient can be expressed as

1
|B(x)|

∫
∂B(x)

u(y)ν (y) dy −

∫
B(x)

f (y)∇G(x ,y) dy (14)

The WoS estimator just adds a single sample of the latter integral
for each step of the walk. This same estimator can be used directly
for a biharmonic equation (which is expressed in terms of a Poisson
equation); for a screened Poisson equation one simply replaces ∇G
with ∇Gc (App. B.2).

3.2 First-Order Differential Operators
Given an estimate for the gradient ∇u, an estimate of the directional
derivative DZu along any direction Z ∈ Rn is given by

DZu(x) = Z · ∇u(x).

All other first-order differential operators, such as divergence or curl,
can then be expressed via the partial derivatives ∂u/∂ei = Deiu
along the coordinate directions e1, . . . , en (see Sec. 6 for examples).

3.3 Higher Order Derivatives
If u is the solution to a Poisson equation (Eqn. 6), then its Hessian
∇2u can be expressed via the integral formula

∇2u(x) = n2

R4
1

|∂B(x) |

∫
∂B(x) u(y)(y − x)(y − x)⊤ dy

− n
R2

1
|∂B(x) |

∫
∂B(x) u(y)I dy −

∫
B(x) f (y)∇

2G(x ,y) dy,

where R is the radius of B(x), and I ∈ Rn×n is the identity matrix.
The WoS estimator for ∇2u(x0) could in principle then be written as

ûf (x1)

(
n2

R4
(x1 − x0)(x1 − x0)

⊤ −
n

R2
I

)
− |B(x0)| f (y0)∇

2G(x0,y0),

(15)
where x1 ∼ 𝒰(∂B(x0)) and y0 ∼ 𝒰(B(x0)). Here we run into some
difficulty if the Hessian of the Green’s function ∇2G involves terms
that behave like Dirac deltas (which will happen, e.g., for the har-
monic Green’s function): without an importance sampling strategy
akin to those used for point sources (Sec. 4.2.2), important contribu-
tions will be missed. However, we can apply integration by parts to
obtain a different expression for this term, namely∫
B(x)

∇y f (y)∇xG(x ,y) − f (y)(ψ (x ,y) (y−x)(y−x)⊤−ϕ(x ,y) I) dy,

where ∇y denotes the gradient with respect to y, andψ and ϕ are
functions that depend on the particular choice of Green’s function
(see App. B.2.2). This quantity can then be estimated via, e.g., a
single Monte Carlo sample. As with the gradient, other 2nd-order
differential operators can then be estimated via the Hessian estimate.
See Fig. 6 for a numerical example, and Fig. 15 for convergence plots.

4 VARIANCE REDUCTION
To date, there has been little work on applying variance reduction
to WoS—we here give several strategies that improve on the basic
PDE and derivative estimators from Secs. 2 and 3.

4.1 Control Variates
Suppose we want to estimate an inte-
gral

∫
Ω
ϕ(x) dx , and have a function

ϕ̃(x) with known integral c ∈ R. A
control variate strategy is then

c +
1
N

N∑
i=1

ϕ(Xi) − ϕ̃(Xi),

i.e., estimate the difference between ϕ and ϕ̃, then shift by c . Intu-
itively, if ϕ̃ is similar to ϕ, then the difference will have smaller
variance than ϕ itself (see [Veach 1997, 2.5.3] for further discussion).

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

123:6 • Sawhney and Crane

Control Variates for PDEs. Sup-
pose we let ϕ̃ be a low-order Taylor
approximation of ϕ around some
point x0. Then in a small neighbor-
hood of x0 the function ϕ − ϕ̃ will
look “flat,” i.e., it will have low vari-

ance. This control variate is useful forWoS estimators, which seek to
integrate a function over a (typically small) sphere or ball. Though
we do not know the terms of the Taylor series a priori, we can use
running derivative estimates to get an increasingly good guess. In
fact, when both solution and gradient strategies are used in con-
junction, they reinforce each-other: the variance of the solution
estimator is reduced by the gradient estimate, and vice versa. In
practice, we hence use these two strategies for all PDEs.

4.1.1 Control Variate for Solution. For a PDE with solution u, let
∇uk (x0) be the running estimate of the gradient for the first k walks
at x0 (computed as in Sec. 3). Since this estimate is unbiased, and the
linear term ∇u(x0) · (x − x0) in the Taylor series for u(x0) integrates
to zero over any ball around x0 (i.e., c = 0), we can replace any
existing WoS estimator û with the estimate

1
N

N∑
i=1

û(x0) − ∇u
i−1

(x0) · (x
i
1 − x0), x i1 ∼ 𝒰(B(x0)), (16)

where x i1 denotes the first step in the ith walk. (Note also that
the estimate ∇ui−1 is statistically independent of the ith walk.) In
practice even this simple strategy can help reduce variance—see for
example Fig. 6.

4.1.2 Control Variate for Gradient. Variance reduction for deriva-
tives is especially important, since differentiation amplifies high
frequencies. Our control variate strategy for the gradient is com-
plementary to the one for the solution: let u0k (x0) be the running
estimate of the solution u0(x0) for the first k walks. Then we can
replace the gradient estimator for the boundary term (Eqn. 13) with

n

R

1
N

N∑
i=1

(û0(x0) − ui−10 (x0))ν (x
i
1).

Since (by symmetry) the normal ν integrates to zero over the sphere,
the expected value of the estimator is unchanged (c = 0) but the
variance is typically lower since the control variate gets closer and
closer to the true value of u0(x0). Likewise, if f

k := 1
k
∑k
i=1 f (y

i
0) is

the running average of source values sampled from the initial ball,
then we can subtract this value from f (y) in our estimator for the
initial source term in Eqn. 14. This strategy parallels methods used
in reinforcement learning [Sutton and Barto 2018, Section 13.4], and
is related to techniques used on discrete grids [Newton 1994].

4.1.3 Control Variate for Hessian. This approach extends to higher-
order derivatives. For example, in the ith term of our Hessian esti-
mator for the boundary term (Eqn. 15) we can replace û0(x i1) with

û0(x
i
1) − ui−10 (x0) − ∇u

i−1
0 (x0) · (x

i
1 − x0).

(Alanko and Avellaneda [2013] discuss a similar approach for grids.)
Note that both running sums have already been computed for the

estimated Hessian
true Hessian

estimated gradient
true gradient

without control variates with control variates

estimated solution

min max

Fig. 6. Control variates provide modest variance reduction for the solution
(top), and become more important for higher derivatives of the solution
(middle, bottom). Here we plot the Hessian’s principal values and axes as
ellipses; notice that variance is higher near the boundary, and axes are
harder to estimate in regions where the Hessian has small magnitude.

source and gradient control variates; these could now be further
improved via the Hessian estimate, though we do not do so. Fig. 6
shows the effect on variance, which is about 7x lower than the
baseline estimator from Eqn. 15 (see Fig. 15, right).

4.2 Importance Sampling
We can also reduce variance via importance sampling (Eqn. 2). Here,
sampling the Green’s function G or the source term f is analogous
to sampling materials or illumination (resp.) in Monte Carlo ren-
dering; both strategies can be combined via multiple importance
sampling [Veach and Guibas 1995b], as in Fig. 7. We also give a strat-
egy for importance sampling the space of walks in the case of nested
equations (Sec. 4.3), akin to bidirectional path tracing [Lafortune
and Willems 1993; Veach and Guibas 1995a].

Fig. 8. Uniform (left) vs. impor-
tance sampling (right) the har-
monic Green’s function.

4.2.1 Green’s Functions. Recall that
the integral formula for the Poisson
equation (Eqn. 7) involves a term∫
B(x) f (y)G(x ,y) dy, where G is the
harmonic Green’s function on B(x).
One way to importance sample this
term is to simply draw yk from the
distribution pG := G/

∫
B(x)G(x ,y) dy.

Such samples can be generated via
any standard technique (e.g., rejection sampling); in 3D we use Ul-
rich’s polar method [Devroye 1986, Section 9.4]. The same strategy
can be applied to any PDE with a known Green’s function—App. B
gives sampling densities for all PDEs appearing in this paper. In prin-
ciple, one could also extend this strategy to PDEs where the Green’s
function can only be tabulated numerically, akin to importance
sampling for measured BRDFs [Lawrence et al. 2004].

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

Monte Carlo Geometry Processing • 123:7

sampling the sources sampling the Green’s function

multiple importance sampling

Fig. 7. The source term f and Green’s function G play the same role as
lights and materials in Monte Carlo rendering (resp.); variance can hence be
reduced via familiar importance sampling strategies—here we use multiple
importance sampling to robustly sample screened Poisson equations for
varying coefficients c , with area sources of varying size.

4.2.2 Source Terms. We can also sample the source term f . An
important case is a point source fz := cδz , where c ∈ R is a con-
stant, and δz is the Dirac delta centered at a point z ∈ Ω. Point
sources are analogous to point lights in rendering, and appear in
applications such as computing shape signatures [Sun et al. 2009] or
distances [Crane et al. 2017]. If there is a single source δz inside the
current ball B(x), we can use an importance density p = δz , yielding
an importance sampled estimator

f (z)G(x , z)

p(z)
=

cδzG(x , z)

δz
= cG(x , z),

i.e., just use a single sample at y = z. Unlike rendering point lights,
there is no visibility term since B(x) is contained entirely in Ω;
hence, z can always be reached via random walks from x .
Similarly, consider a curve source fγ := cδγ , where δγ is the (1-

Hausdorff) measure of a curve γ ⊂ Ω, and c is a function along γ .
When γ intersects B(x), we can sample points y1, . . . ,yM uniformly
from γB := γ ∩ B(x) and use the estimator

|γB |
1
M

M∑
j=1

c(yj)G(x ,yj).

Alternatively, one can just uniformly sample the whole curve γ , and
drop the contribution of points outside B(x). This strategy is easily
generalized to anym-dimensional subset; Fig. 9 shows an example.

Fig. 9. Source terms can be importance sampled by randomly picking points
on the source, restricted to the current ball in the walk. Without importance
sampling, only the area source fA would appear on the right; the point
source fz and curve source fγ would never get sampled.

4.3 Nested Equations
Our naïve estimator for the biharmonic equation (Sec. 2.5) takes
O(SN 2) steps, where N is the number of walks used for the Pois-
son/Laplace estimators, and each walk takes O(S) steps. We can
reduce the cost to O(SN) by introducing a tree walking strategy,
which increases efficiency by re-using partial walks—in the spirit of
bidirectional path tracing (BDPT). Unlike BDPT, we do not generate
walks starting at the boundary, but instead connect source samples
to the path used for the boundary estimate. More precisely, at each
step xi of the “outer” walk we still use a single point yi to sam-
ple the source term (à la Sec. 4.2). But rather than using the basic
WoS estimator for v(yi) (Eqn. 5), we use the estimate v̂(yi) = h(xk),
where xk is the final point in the walk used to estimate u(x0). In
other words, we connect a walk of length one (from yi to xi) to the
longer walk from xi to xk , then grab the boundary value (Fig. 10).
Though the walks are now more strongly correlated, they are also
significantly cheaper to compute—in practice, we get reduced vari-
ance for equal compute time (Fig. 11). The same kind of thinking
can in principle be applied to other PDEs; it may also be interesting
to consider connecting walks of different lengths (as in BDPT).

5 SOLVER FRAMEWORK
The utility of WoS for geometry processing can be greatly enhanced
via intelligent treatment of boundary representations (Sec. 5.1) and
visualization (Sec. 5.2). Just as open source software like PBRT [Pharr
et al. 2016] and Mitsuba [Jakob 2010] has played an important role

nested walk tree walk

Fig. 10. Left: naïvely nesting a Poisson and Laplace estimator to solve a
biharmonic equation yields a large number of walks. Right: by re-using the
boundary path (blue) to compute source contributions (green), we obtain
lower variance for the same total compute time.

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

123:8 • Sawhney and Crane

min

max
tree walking

naive (nested)
~15x more walks

naive (nested)
~150x more walks

naive (nested)
~1500x more walks

reference (FEM)

Fig. 11. Here we compare our integration strategy for biharmonic equations
to a naïve nested strategy with the same number of outer walks, and 1, 10,
and 100 inner walks; for this example each outer walk takes about 15 steps.
The tree walking result is slightly noisier, but many times more efficient.

in rendering research, we have built these features into an open-
source PDE solver called zombie (in homage to “random walkers”).
The design of zombie is based on PBRT, but objects from rendering
have been replaced with appropriate analogues from PDE theory.
All code was written from scratch in C++. We currently use only
basic CPU thread-level parallelism; significant performance gains
can likely be made via vectorization and GPU acceleration.

5.1 Boundary Representations
To find an empty ball B(x) around a given point x ∈ Ω, we need only
determine the distance R to the closest point x ∈ ∂Ω, or a conserva-
tive underestimate of this distance. As detailed here, such distances
are easily computed for a wide variety of shapes; multiple shapes can
be combined by taking the minimum over all per-shape distances,
or more generally, by applying Boolean operations (Sec. 5.1.4).

Closest Points. Closest point queries can be accelerated via a spa-
tial hierarchy [Pharr et al. 2016, Chapter 4]. Relative to ray trac-
ing [Parker et al. 2010; Wald et al. 2014], there has been very little
work on high-performance closest point queries [Shellshear and
Ytterlid 2014; Ytterlid and Shellshear 2015]. We currently just use a
basic axis-aligned non-vectorized BVH, though recent GPUs provide
opportunities for massive acceleration [Wald et al. 2019].

5.1.1 Polygon Soup. Real-world geometry is often given as a list
of polygons without explicit connectivity, and which satisfies no
special conditions (manifold, orientable, etc.). We can solve PDEs
directly on such “polygon soup” by simply taking the closest point
among all polygons. Rather than attempt to fix cracks, holes, and
self-intersections [Shen et al. 2005; Attene et al. 2013], we simply
solve an exterior problem à la Sec. 2.6 (Fig. 2, right). Note that in
contrast to generalized winding numbers [Jacobson et al. 2013], the
input need not meet any special conditions on orientation.

5.1.2 Parametric Curves and Surfaces. In 2D we use the method
of Chen et al. [2007] to compute closest points on cubic Bézier
curves. Such a representation is attractive for 2D illustration tools
(such as Illustrator or Inkscape), since it avoids mesh generation
and quantization error (consider Fig. 17). Closest points can also be
computed directly for NURBS and subdivision surfaces [Dyllong

boundary conditions

sampling pa�ern (uniform)

sampling pa�ern (adaptive)

reference solution

uniform (100x fewer samples)

adaptive (100x fewer samples)

Fig. 12. Just as mesh-based methods interpolate solution values at a few
sparse points, we can rapidly visualize solutions to PDEs via scattered data
interpolation. Here we solve a Laplace problem using either uniform or
adaptive sampling and simple MLS interpolation to reduce the sample cost
by 100x. Notice that adaptive sampling better resolves the high-frequency
boundary conditions.

and Luther 2000; Ullrich et al. 2007], but are not yet implemented in
our framework.

5.1.3 Implicit Surfaces. Many shapes are concisely described by
the zero level set of a function ϕ : Rn → R. When ϕ is a signed
distance function, the size of the largest ball around x is simply
|ϕ(x)|. More generally, conservative estimates of the distance to
an implicit surface can be obtained by bounding the gradient |∇ϕ |,
which in turn gives a Lipschitz constant for ϕ [Hart 1996, Theorem
1]. A rich variety of shapes can be described this way [Hart 1996,
Table 1]; Fig. 2, left shows a smooth blend between two tori.

5.1.4 Booleans. Boolean operations can be used to concisely en-
code complex models, à la constructive solid geometry (CSG) [Re-
quicha and Voelcker 1977]. Tremendous effort has been put into
developing robust mesh booleans [Bernstein and Fussell 2009; Pavić
et al. 2010; Zhou et al. 2016], but they generally remain expensive
and error prone, cannot be mixed with other geometric representa-
tions, and still require meshing of the domain interior. In contrast,
ray tracing can evaluate booleans via simple arithmetic on intersec-
tion distances [Roth 1982]. We can likewise combine closest point
distances to solve PDEs directly on boolean arrangements (Fig. 2,
center). Operations on distances needed for both hard booleans as
well as soft “blends” are detailed in Hart [1996, Table 1].

5.2 Visualization
A unique feature of Monte Carlo it is that it can evaluate the solution
at arbitrary points without performing a global solve. We explore
how this feature can improve fidelity and reduce end-to-end cost.

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

Monte Carlo Geometry Processing • 123:9

4wpp denoising
(<1s)

reference

Fig. 13. Even for a small number of walks per pixel (left), techniques for
denoising renders (center) closelymatch the reference solution (right), further
increasing efficiency—especially for PDEs with smooth solutions.

5.2.1 Interpolation. Elliptic PDEs have highly regular solutions
away from the source and boundary. Conventional methods exploit
this behavior by interpolating over a mesh; we can likewise interpo-
late over scattered samples to dramatically reduce cost. For instance,
in Fig. 12, (middle) we use simple Poisson disk sampling [Bridson
2007] and moving least squares (MLS) interpolation [Nealen 2004].
To avoid “bleeding” artifacts we shoot rays to exclude neighbors
not visible from sample points. There are plenty of opportunities
for improvement and acceleration (e.g., via fast multipole meth-
ods [Sun et al. 2014]); note that all interpolation schemes introduce
bias (including standard nodal interpolation in FEM).

5.2.2 Adaptive Sampling. We can also use adaptive sampling to con-
centrate effort on interesting regions. For instance, Fig. 12 (bottom)
applies a simple scheme in the spirit of irradiance gradients [Ward
and Heckbert 1992]: we first estimate the solution and gradient at a
set of seed points. Then, for any candidate sample x , we evaluate
a 1st-order Taylor approximation û(yi) + ⟨∇̂u(yi),x − yi ⟩ for the
k nearest neighbors y1, . . . ,yk of x . If the sample variance divided
by the mean is above a threshold σ > 0, we estimate the value
and gradient at x and add it to the set (we use σ = 0.01). More
sophisticated strategies from rendering provide ample inspiration
for future work [Zwicker et al. 2015].

5.2.3 Progressive Rendering. As in rendering, we can progressively
increase either the resolution, or the number of walks per sample,
to generate a fast “preview” that can be subsequently refined. This
approach provides a fast iteration cycle (e.g., interactively adjusting
geometry or boundary conditions), and is especially valuable when
working with massive models (Fig. 1, right).

5.2.4 Denoising. Techniques for denoising rendered images [Rous-
selle et al. 2013; Kalantari et al. 2015] appear to translate well to the
PDE setting. For instance, in Fig. 13 we apply Intel’s deep learning-
basedOpen Image Denoise algorithm [Intel 2019], using the boundary
value at the closest point in place of the albedo map. (Note: no other
results in this paper use denoising.) Training such a network on PDE
data rather than rendered images may further improve performance.

5.2.5 Region of Interest. Cost can be reduced dramatically by focus-
ing on a small region of interest. For instance, in Fig. 18 we restrict a
3D solution to a 2D slice, reducing cost fromO(n3) toO(n2) samples.
Zooming into a small region of Fig. 16 likewise resolves additional
detail without having to refine the entire domain. A more radical

cost reduction might be achieved for algorithms that need solution
values only at isolated points (e.g., Sun et al. [2009]).

5.2.6 Vector Field Visualization. A vector-valued solution X can
be visualized using very sparse sampling. For instance, to draw a
standard quiver plot, we need only compute one solution value
per arrow—rather than solving the PDE over the entire domain
(see Figs. 6 and 19). We can also draw streamlines γ , obtained by
numerically integrating the ordinary differential equation (ODE)
d
dt γ (t) = X (γ (t)) starting at some collection of seed points. Once
again, the value of X need only be estimated at the sparse sample
points used by the ODE integrator—examples computed via Huen’s
method are shown in Figs. 19, 20 and 21.

6 EVALUATION AND GEOMETRIC ALGORITHMS
Here we use several synthetic tests as well as a few fundamental
geometric algorithms to evaluate the effectiveness of our Monte
Carlo solver for problems in digital geometry processing. Applica-
tion examples in Sections 6.4–6.7 are meant only to highlight the
potential of Monte Carlo methods in geometry processing; further
exploration and evaluation are left for future work.

6.1 Stopping Tolerance
The only parameter in the walk on spheres algorithm is the stopping
tolerance ε (Sec. 2.2.1). Early stopping extends boundary conditions
into an ε-neighborhood ∂Ωε , and the solution in turn exhibits a
small bias toward these boundary values. Dirichlet boundary con-
ditions are hence still enforced with the given value, though the
location of enforcement may be off by a tiny distance ε . Though
in principle bias can be completely eliminated via a Green’s func-
tion first passage approach [Given et al. 1997; Mascagni and Hwang
2003], a pragmatic solution is to simply use a small value of ε .

Fig. 14. Tiny features are preserved for any value of ε . For very large values
of ε , the walk on spheres algorithm jumps to the closest point, producing
a Voronoi-like solution (top left). Decreasing ε quickly eliminates any bias.
Since small ε values do not significantly increase the average number of
steps per walk, it is generally unnecessary to hand-tune this parameter.
(Note that if the box above represents a domain 1 meter in width, then 10−4
is about the width of a human hair; small bacteria are on the order of 10−6.)

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

123:10 • Sawhney and Crane

In practice, an accurate solution is obtained for fairly large ε
values—even in the presence of tiny features (Fig. 14). Importantly,
arbitrarily small geometric features will always appear in the solu-
tion, since there will always be evaluation points x in their Voronoi
region, independent of ε . Moreover, such features will still have a
global effect on the solution, since a random walker has a nonzero
probability of reaching any boundary component of finite size. The
only potential problem is if spacing between features is smaller than
ε , which is easily avoided by (universally) using a small ε . Note that
shrinking ε by a few orders of magnitude does not significantly
increase cost due to the exponential shrinking of balls [Binder and
Braverman 2012]. In contrast, mesh-based solvers can eliminate
small features entirely (Fig. 27), and their time/memory cost often
blows up dramatically with smaller tolerances ε (Sec. 6.4).

6.2 Comparison to Finite Elements
Making an apples-to-apples comparison to FEM is difficult due to
both (i) the very different capabilities of the two classes of meth-
ods (i.e., different possible inputs and outputs) and (ii) the fact that
FEM solver code is very mature, whereas our implementation is
an unoptimized research prototype. Comparison with high perfor-
mance ray Monte Carlo rendering code suggests significant room
for improvement. For instance, Intel’s Embree [Wald et al. 2014]
performs about 20–200x more ray queries per second than our code
performs closest point queries—even though these two queries have
extremely similar structure. Our current implementation is hence
much slower than FEM for basic problems (e.g., computing all nodal
values on a coarse tet mesh), though when factors such as meshing
are taken into account, it is already quite competitive in terms of
end-to-end cost (see for instance Fig. 1, and Figs. 18 and 27).

method
#triangles
#samples

precompute
solve

linear FEM
2M
47k nodes
14 hours
13 seconds

Monte Carlo
10M
23k pixels
0.4 seconds
57 seconds

MC
FEM

To get a rough sense of
the tradeoffs, we solved a
Poisson equation on the
model in Fig. 1 using WoS
and piecewise linear FEM
(see inset). To use FEM we
had to first generate a tetra-
hedral mesh; the only suit-
able method (due to many
holes and self-intersections

in the input) was FastTetWild, which takes a geometric tolerance
as input. Though the input mesh had 10M triangles, the smallest
tolerance our machine could handle (5 × 10−4) simplified the input
to 2M triangles after 14 hours, and hence (as in Fig. 27) destroyed
biologically relevant features. The resulting tet mesh had 500k ver-
tices, but only 47k of these were interior nodes—hence, the spatial
resolution of the FEM solution was quite poor, even though the tet
mesh was rather large. In contrast, our Monte Carlo solver needed
only 0.4 seconds for precomputation (to build a BVH), and exactly
preserved the input boundary mesh by design. We estimated the so-
lution at a similar number of pixels (23k), providing a solution with
superior spatial resolution (and a bit of noise), albeit only on a slice
rather than the whole volume. Overall, although the FEM “solve”
step is hard to beat in terms of raw speed per sample, the end-to-end
quality and performance characteristics are quite different.

solution

er
ro

r

er
ro

r

er
ro

r

walks # walks # walks

gradient Hessian

L2

L∞

L∞— control variates

L2— control variates

10-3

10-2

102 103 104

10-1

10-1

10 102 103

103

104

107

1010

1013

105

107

10410 102 103 10410

10

10

1

Fig. 15. Since our estimators are unbiased, they exhibit the expected 1/N
Monte Carlo convergence rate with respect to the number of walks N . Here
we plot convergence with respect to the number of walks for the Poisson
equation depicted in Fig. 6, showing both the average (L2) and worst (L∞)
error over about 400 regularly-spaced evaluation points. As walks increase,
control variates provide a roughly 5x and 7x reduction in average error for
gradients and Hessians, resp.

6.3 Convergence
Convergence to the true (smooth) solution is guaranteed simply by
the fact that we use unbiased Monte Carlo estimators. More pre-
cisely, an N -sample Monte Carlo estimator FN as described in Eqn. 1
is unbiased if the expected value E(FN) is equal to the value of the
original integral (even for N = 1). In this case it is also consistent, i.e.,
as N → ∞, the error FN −I goes to zero with probability one [Veach
1997, Section 2.4.3]. In particular, the variance will decrease at a
rate 1/N , independent of dimension. Fig. 15 verifies that our esti-
mators exhibit the expected convergence behavior, and generally
converge faster when adopting the control variate strategy outlined
in Sec. 4.1. Note that interpolation (à la Sec. 5.2.1) will introduce
bias, though consistency can still be provided by schemes like MLS
under reasonable conditions on sample distribution [Mirzaei 2015].

6.4 Diffusion Curves and Surfaces
To examine the ability of our solver to handle complex bound-
aries and boundary conditions, we implemented diffusion curves
(Fig. 16) and diffusion surfaces (Fig. 18), which encode a resolution-
independent 2D image or volumetric texture as the solution to a
Poisson equation with two-sided boundary conditions. A nice fea-
ture of Monte Carlo is that we can directly compute the solution
on a zoom-in or cross section by just evaluating points of interest,
rather than precomputing a global solution (as in Orzan et al. [2008,
Section 3.2.4]). Moreover, the Monte Carlo approach completely de-
couples signal frequency from geometric resolution—for instance,
Fig. 12 shows highly oscillatory boundary conditions on just two

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

Monte Carlo Geometry Processing • 123:11

Fig. 16. Bézier curves with two-sided
boundary conditions plus a source term
(left) define a diffusion curve image
(right). Monte Carlo allows us to zoom
in on a region of interest without com-
puting any kind of global solution; since
curves need not be discretized, there is
no loss of fidelity.

cubic Bézier segments. In contrast, traditional methods must explic-
itly refine a background grid or mesh to even encode such boundary
conditions (much less compute a solution).

build BVH (Monte Carlo)
0.06ms
original Bézier curves

FEM mesh (TriWild)
3m 21s

Fig. 17. Even robust mesh-
ing algorithms can distort
small geometric details.

To further examine tradeoffs with
the finite element approach, we gener-
ated triangular and tetrahedral meshes
(resp.) for these two domains using
TriWild [Hu et al. 2019] and Fast-
TetWild [Hu et al. 2020], which are state-
of-the-art robust meshing algorithms. In
addition to needing significant time and
memory just for mesh generation (i.e.,
without even solving the PDE), the de-
fault tolerances in these methods were
not sufficient to capture fine-scale de-
tails. Tuning such tolerances is expen-
sive since a mesh must be re-generated
each time, and is hard to do in an auto-
matic fashion. Moreover, tolerances that
are too tight can lead to an explosion
in cost—for instance, even just lowering
FastTetWild’s default tolerance of 10−3
to 10−4 used up 22GB of memory and
failed to generate a mesh after 14 hours
of wall clock time.
In contrast, the tolerance ε in the

Monte Carlo approach (Sec. 2.2.1) has
very little effect on cost and accuracy:
for very loose tolerances small features
can get rounded out, but cannot disappear (Fig. 14). Even tiny toler-
ances add only a few steps to each walk, due to the log(1/ε) behavior
of the walk on spheres algorithm (Fig. 14), i.e., computation cost
does not blow up dramatically.

Fig. 18. Left: a 3.3M triangle boundary mesh with fine features, from a
CT scan of hemisus guineensis (courtesy Blackburn Lab). To visualize the
solution to a volumetric PDE, we can significantly reduce cost by computing
only a 2D slice of the full 3D solution (right). Inset: fine features are perfectly
preserved since we work with the exact input geometry.

6.5 Symmetric Direction Fields
We also explored the use of our solver in problems with vector-
valued solutions. Rotationally symmetric direction fields such as
line fields and cross fields play a key role in algorithms ranging
from quadrilateral meshing [Bommes et al. 2013] to texture synthe-
sis [Knöppel et al. 2015]. We implemented a cross field generation
scheme that adopts ideas from Knöppel et al. [2013]. Consider a
domain Ω ∈ Rn , and let ν : ∂Ω → C denote the outward normals
along the boundary, encoded as unit complex numbers. The func-
tion ν̃ := ν4 represents a cross field adapted to the boundary: if two
normal vectors ν1,ν2 differ only by quarter rotations, then ν̃1 = ν̃2.
To get the smoothest cross field compatible with this boundary cross
field, we solve the Laplace equation ∆ψ = 0 subject to Dirichlet
boundary conditionsψ |∂Ω = ν4 for a functionψ : Ω → C. At any
given point x , the fourth roots of the normalized solution value
φ(x) := ψ (x)/|ψ (x)| then give the four directions of the cross. The
only change to our basic Laplace estimator (Sec. 2.2) is that we
accumulate complex values rather than real ones.

To visualize the solution, we need only solve forψ at the (sparse)
set of points where we wish to draw crosses. Following Viertel and
Osting [2017], we can also draw integral curves connecting field
singularities—we implemented a basic version of this scheme. To
locate singularities, we sample a collection of random seed points
x0 and perform gradient descent on the field magnitude |∇ψ |2, i.e.,
we numerically integrate the ODE

d
dt x = −2⟨ψ ,∇ψ ⟩,

where ∇ψ is evaluated via Eqn. 12. The index n ∈ Z of the final
(singular) point x∗ can be determined by picking any point x near
x∗ and evaluating the expression

n = −ı
|x − x∗ |

ψ (x)
Duψ (x),

where Du denotes the derivative along the direction u := ı(x −

x0)/|x − x0 |. This value will approach a real integer as x → x∗.

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

123:12 • Sawhney and Crane

Fig. 19. Cross fields and corresponding quad layouts obtained by connecting
singular points; no meshes were used at any stage.

Integral curves are then traced from the singularities as described in
Sec. 5.2.6, except that at each step of integration we follow the cross
direction best aligned with the curve tangent. Several examples are
shown in Fig. 19. Note that unlike mesh-based methods, we never
have to worry about spurious singularities arising from principal
matchings (as discussed by Vaxman et al. [2016, Section 6.3]). More-
over, since we are ultimately just taking an average of boundary
values with respect to the harmonic measure, this scheme opens
the door to more nonlinear 3D field generation problems—we leave
such extensions to future work.

6.6 Helmholtz Decomposition
A powerful tool in flow processing and visualization is theHelmholtz
decomposition, which expresses a given vector fieldX as the sum of a
curl-free, divergence-free, and harmonic part. In computer graphics,
such decompositions have been considered on meshes [Tong et al.
2003; Zhao et al. 2019] and point clouds [Ribeiro et al. 2016], both
of which entail discretizing space and solving large linear systems.
On a domain Ω ⊂ R3, one possible decomposition is

X = ∇u + ∇ ×A + Y , (17)

whereu is the solution to the scalar Poisson equation ∆u = ∇·X ,A is
the solution to the vector Poisson equation ∆A = ∇×X (which is just
three componentwise scalar equations), and Y is the remaining part.
Setting u and A to zero along ∂Ω yields standard normal-parallel
boundary conditions [Bhatia et al. 2014, Section 4.2], which ensure
the decomposition is unique [Bhatia et al. 2013]. In 2D we get an
analogous decomposition by replacing A with a scalar potential
a : Ω → R, and replacing ∇ ×A with J∇a, i.e., a 90-degree rotation
of the gradient of a.
To compute this decomposition via Monte Carlo, we compute

the necessary derivatives (Sec. 3) of the solution to the two Poisson
equations (Sec. 2.3). Basic 2D and 3D examples are shown in Fig. 20
and Fig. 21. As in Sec. 6.5 we also trace streamlines, again by applying
a standard ODE integrator to the derivative estimates.

Fig. 20. With theMonte Carlo approach, one does not even have to discretize
input data. Here we decompose an input vector field X given by a closed-
form, analytic expression on a domain with a Bézier boundary curve (top
left) into its curl-free, divergence-free, and harmonic components.

Fig. 21. Helmholtz decomposition on a 3D domain. The Monte Carlo ap-
proach entirely avoids meshing the domain, setting up matrices, and solving
linear systems.

6.7 Shape Deformation
We implemented a simple 2D shape deformation tool that works
directly with Bézier curves, rather than building a cage or mesh
(Fig. 22). To do so, we solve a biharmonic equation for a coordinate

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

Monte Carlo Geometry Processing • 123:13

(input) (edited)

Fig. 22. We can perform shape deformation by directly editing Bézier curves,
including open curves on the shape interior.

mapping ϕ ′ : Ω′ → Ω, where Ω and
Ω′ are the source and target domains,
resp.We can then use ϕ ′ to lookup into
a texture. The 0th-order boundary con-
ditions at any point x ′ ∈ ∂Ω′ are just

the corresponding coordinate values ϕ(x) on the input domain
(which we determine via the Bézier parameterization). Second-order
boundary conditions provide “as linear as possible” behavior near
the boundary, in the spirit of Stein et al. [2018]. More precisely,
we let e1 := ν ′ be the unit normal to ∂Ω′, and enforce the condi-
tion ∂2ϕ ′/∂e21 = 0, i.e., no second derivative in the normal direc-
tion. To do so, we note that ∆ϕ ′ = ∂2ϕ ′/∂e21 + ∂

2ϕ ′/∂e22 , where e2
is orthogonal to e1. Hence, we can just use boundary conditions
∆ϕ ′ = ∂2ϕ/∂e22 in Eqn. 10 to get a vanishing second normal deriv-
ative (since ϕ = ϕ ′ along the boundary). Importantly, the second
derivative along e2 is not the same as the second derivative along
the boundary curve γ , since a curve agrees with its tangent line
only up to first order. Using the chain rule one can in fact show that

∂2ϕ

∂e22
=

d2

ds2
(ϕ ◦ γ) + κν ,

where s is the arc-length parameter for γ , κ is its curvature, and ν is
its unit normal. Since a Bézier curve γ (t) is not typically arc-length
parameterized, we use the formula

d2

ds2
(ϕ ◦ γ) =

d2u/dt2

|dγ/dt |2
−

du/dt

|dγ/dt |4
〈
d2γ/dt2,dγ/dt

〉
.

Derivatives with respect to t (as well as the usual
formula for κ) are then easily expressed via the
usual Bernstein basis. Relative to triangle meshes,
this higher-order representation makes it easy to
directly control things like the tangential “stretch-
ing” of the boundary (see inset). On the other hand,
computing each deformation directly via WoS is

dramatically slower than with state-of-the-art FEM techniques [Ja-
cobson et al. 2011]; like these methods, it would be wise to consider
how a basis of deformations can be precomputed and re-used. Fi-
nally, it is interesting to consider analogous strategies for volumetric
deformations, via subdivision or NURBS surfaces (Sec. 5.1.2).

7 RELATED WORK
We here contrast the Monte Carlo approach with more conventional
solvers for linear elliptic PDEs (Laplace, Poisson, etc.). The litera-
ture on solving these problems is vast; here we consider aspects
specifically relevant to digital geometry processing.

7.1 Discretization Error

Fig. 24. Even on simple do-
mains, conventional methods
must refine the mesh to cap-
ture detailed boundary data.

The basic premise of conventional
solvers is to reduce a PDE to a finite
dimensional system of equations. Con-
structing this system necessitates sam-
pling or tessellating the domain or
its boundary, making discretization
error inevitable. In contrast, WoS in-
troduces no spatial discretization—the
only opportunity for error is in the
stopping tolerance ε , which has vir-
tually no effect on geometric qual-
ity (Sec. 6.1). Likewise, conventional
methods must refine the mesh to
capture detailed boundary conditions
(Fig. 24), whereas WoS decouples the
resolution of boundary data from the
geometry. An analogy from rendering is the use of high-resolution
image-based lighting [Debevec 2002], which greatly enhances the
richness and flexibility of illumination relative to finite element
radiosity [Gershbein et al. 1994].

7.2 Approximation Error
Conventional methods must also approximate differential operators,
using either local Taylor approximation (as in finite difference meth-
ods), or by restricting solutions to a finite-dimensional function
space (as in FEM). Proving consistency with smooth solutions is
challenging even for fairly common equations [Dziuk 1988; Stein
et al. 2019]. Schemes that are consistent in a weak sense can still give
unreliable pointwise derivatives (Fig. 26), which are needed for tasks
like curvature evaluation [Meyer et al. 2003]. Using higher-order
elements can significantly inflate degree—on triangle meshes, for
instance, 5th-order polynomials are needed to get even C1 continu-
ity [Papanicolopulos and Zervos 2013], and standard subdivision

finite di�erence finite element Monte Carlo

Fig. 23. Grid- and mesh-based algorithms (left, center) consume significant
memory since they explicitly discretize even simple geometry, and must
use gradual grading to maintain good element quality. Monte Carlo meth-
ods (right) concisely represent smooth geometry and small features via a
bounding volume hierarchy (BVH), providing excellent memory scaling.

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

123:14 • Sawhney and Crane

mesh w/ FastTetWild
1 hour 25 minutes

build BVH for WoS
< 1 second

input
(Thingi10k #996816)

Fig. 25. Finite element methods exhibit unpredictable performance, since
models with simple geometry but poor element quality (left) can confound
even robust meshing algorithms (center, from Hu et al. [2020]). The Monte
Carlo approach simply needs to build a standard bounding volume hierarchy
(right), dramatically reducing the end-to-end cost of solving a PDE.

bases are not C2 at irregular vertices [Peters and Reif 2008, Section
1.8]. Moreover, the convergence of FEM can slow down in the pres-
ence of features like reentrant corners [Givoli et al. 1992, Equation
2], which are common in real-world geometry. Since WoS exactly
simulates a stochastic process that models the smooth PDE, such
issues simply do not arise.

7.3 Boundary Representations
Conventional solvers must convert high-order or implicit boundary
representations (e.g., NURBS or CSG models) into explicit meshes
that can be used for analysis. Monte Carlo methods enable geometry
processing algorithms to be run directly on a much richer class of
representations, such as curved patches (Sec. 5.1). It also works with
implicit descriptions like algebraic surfaces, and (as in rendering)
can achieve extreme geometric complexity at low memory cost via
techniques like instancing [Snyder and Barr 1987] or procedural
modeling [Deussen et al. 1998]. Particularly relevant for geometry
processing are boolean operations, which are notoriously difficult
to compute explicitly [Bernstein and Fussell 2009; Pavić et al. 2010;
Zhou et al. 2016], yet with WoS amounts to simple arithmetic on
distance values (Sec. 5.1.4).

7.4 Robustness
Meshes encountered in the wild often exhibit abysmal element
quality, are nonmanifold or nonorientable, fail to be watertight,
or have many self-intersections [Zhou and Jacobson 2016]. Such
defects are especially virulent for finite element mesh generation,
where even small defects can induce total failure [Hu et al. 2018,
Section 2]. One remedy is to performmesh repair [Attene et al. 2013],
though such methods provide few hard guarantees. Recent mesh
generation algorithms provide substantial robustness for FEM [Hu
et al. 2018, 2019, 2020], but models with poor element quality can
be prohibitively expensive to mesh (Fig. 25), and efficiency comes at
the cost of spatial quantization that can destroy important features
(Fig. 27). Closer to our goal are robust PDE solvers that exactly
preserve the input, e.g., by degree elevation [Schneider et al. 2019]
or domain decomposition [Sellán et al. 2019]—yet such methods
must still face the gauntlet of tetrahedral meshing.
A key feature of grid-free Monte Carlo methods is that solution

accuracy has nothing to do with the quality of mesh elements (see
Fig. 2, right), providing rock-solid “black box” solvers that can be
used in existing geometry pipelines. The potential for such tools is
hinted at by the method of generalized winding numbers [Jacobson

reference Monte Carlo linear FEM

Fig. 26. Even for a smooth solution u on a high-quality (optimal Delaunay)
mesh, piecewise linear FEM provides only one weak derivative and cannot
be used to reliably evaluate higher-order derivatives like the Laplacian ∆u—
even if the mesh is refined. Monte Carlo methods provide exact pointwise
derivatives, in expectation.

et al. 2013], which effectively solves a special case of the Laplace
equation with two-sided boundary conditions [Barill et al. 2018,
Section 2.1], and has led to robust versions of core geometric algo-
rithms [Zhou et al. 2016; Hu et al. 2018, 2020]. The grid-free Monte
Carlo framework presented here broadens this kind of approach.

7.5 Performance and Scalability
Computationally, the fundamental difference between conventional
PDE solvers and Monte Carlo methods is that, in the former, in-
formation is shared among nodes (via a linear system), whereas in
the latter, values are estimated independently at each point. While
information sharing can increase efficiency, it also comes with signif-
icant costs—e.g., generating a mesh that connects nodes, or parallel
communication overhead.
To compare FEM and Monte Carlo, one must carefully consider

the time it takes to obtain a solution of equal resolution and accu-
racy (Sec. 6.2). Crucially, the basic O(1/

√
N) convergence rate of

Monte Carlo provides a measure of error relative to other methods
that estimate integrals (such as Gauss quadrature)—not those that
solve PDEs. Moreover, factors like mesh generation are far more sig-
nificant in practice than solving the PDE itself. Even state-of-the-art
methods such as FastTetWild [Hu et al. 2020] can take many hours
or many gigabytes of memory (Figs. 1, 25 and 27). Meshless FEM
and boundary element methods (BEM) avoid meshing the interior,
but come with their own challenges and tradeoffs (see for instance

Fig. 27. Robust meshing methods guarantee success at the cost of geomet-
ric accuracy—in this case, completely destroying information about the
circulatory and central nervous systems from Fig. 18. The Monte Carlo ap-
proach exactly preserves these features without hand-tuning of geometric
tolerances (nor spending time and memory to precompute a mesh).

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

Monte Carlo Geometry Processing • 123:15

[Idelsohn et al. 2003; Costabel 1986]). In particular, BEM struggles
to handle source terms, making its use in geometry processing
quite limited. Meshfree Galerkin methods [Li and Liu 2007, Chapter
3] replace meshing with a difficult sampling problem where one
must adaptively sample fine features while simultaneously main-
taining both an upper and lower bound on sample count in each
local neighborhood [Li and Liu 2007, 4.1.1]. Without such admissi-
bility conditions, meshfree FEM will fail to converge. Moreover, the
number of neighbors—and hence system density—must increase as
sample spacing decreases [Zhu et al. 2015].
Since WoS computes the solution independently at each point,

it avoids mesh generation entirely, and is oblivious to sample dis-
tribution. The only precomputation is building a BVH, which has
complexityO(n logn) in the size of the boundary. These savings are
compounded for problems with dynamic geometry, where one can
just update or re-fit the BVH [Kopta et al. 2012].
Other practical issues have a big impact on performance. For

example, Monte Carlo methods are trivial to parallelize, whereas
parallel meshing and matrix factorization are notoriously difficult.
Monte Carlo can use local evaluation to asymptotically reduce cost
(Fig. 18), whereas conventional methods must always perform a
global solve—even BEM involves a dense system coupling all bound-
ary degrees of freedom. Conventional adaptive refinement entails
remeshing and rebuilding a linear system; with Monte Carlo it is
a simple matter of adding more samples (Sec. 5.2.2). Likewise, in
real time scenarios where the compute budget is unknown a priori,
Monte Carlo can just keep sampling, whereas grid-based methods
must carefully predict a global resolution ahead of time.

8 LIMITATIONS AND FUTURE WORK
The goal of this paper was to set the groundwork for Monte Carlo
Geometry Processing by fleshing out some basic estimators and al-
gorithms; clearly a great deal more could be done. One is to develop
good estimators for a larger set of PDEs, which would in turn enable
an even larger set of applications. In this paper we restricted our fo-
cus to theWoS algorithm because it exhibits no bias or discretization
error—though often requires explicit knowledge of certain distri-
butions, e.g., Green’s functions. A much broader class of stochastic
methods could be used to enrich the set of available PDEs [Higham
2001; Kloeden and Platen 2013]. While these methods sometimes in-
troduce (say) a controlled amount of discretization error, they retain
many of the perks of Monte Carlo methods (scalability, geometric
flexibility, output sensitivity, etc.). In particular, PDEs with spatially
inhomogeneous coefficients can be solved in the WoS framework
via walks with smaller steps (akin to volumetric pathtracing). Some
nonlinear PDEs can likewise be handled by, e.g., simulating branch-
ing diffusion [Bossy et al. 2015], or by applying forward-backward
stochastic differential equations [Pardoux and Tang 1999]. We also
did not treat a variety of boundary conditions (Neumann, Robin,
etc.) which often show up in applications—such conditions might
be incorporated using either WoS [Maire and Tanré 2013] or other
stochastic methods.
On the geometric side, the most glaring omission is that we do

not treat surface (i.e., shell) problems—the basic reason is that on a
surface with inhomogeneous curvature the statistical assumption of

WoS no longer holds, i.e., the exit location of a random walk starting
from the center of a ball is not uniformly distributed over the ball’s
boundary. Here it might be interesting to explore a polyhedral WoS
algorithm (since polyhedral surfaces are at least locally Euclidean).
It would also be beneficial to explore subdivision and especially
NURBS boundary representations, which could help avoid meshing
challenges in common engineering/analysis applications.
There are many opportunities for performance improvements—

for instance, building a high-performance closest point library (as
hinted at in Sec. 6.2), or developing a GPU implementation. Spheres
in the WoS algorithm can be replaced by other sets, such as rectan-
gular prisms [Deaconu and Lejay 2006], which can help increase ef-
ficiency for, e.g., domains with thin features. Many possible variance
reduction strategies were not explored—for instance, importance
sampling boundary data, which might be achieved via drifted ran-
dom walks [Øksendal 2003, Section 8.6]. Note also that the Hessian
estimator described in Sec. 3.3 can only be used in problems where
the gradient of the source function f is known; an estimator for
“black box” functions f might be obtained by importance sampling
the Hessian of the Green’s function. Finally, it seems wise to con-
sider hybrid strategies that combine Monte Carlo estimation with
information sharing (see discussion in Sec. 7.5), perhaps by way of
multi-level schemes [Heinrich 2001] or temporal difference methods
in reinforcement learning [Sutton and Barto 2018, Chapter 6].
In the long run, a likely outcome is that there are problems and

algorithms from the FEM setting that do not naturally translate to
Monte Carlo methods, and likewise, paths that can easily be taken
via Monte Carlo but not via traditional PDE solvers. For instance,
we did not even touch on the possibility of solving problems with
unknown, random variables (as often arise when working with mea-
sured data), which seems quite natural in the Monte Carlo setting.
On the whole, we are optimistic that the Monte Carlo approach
to PDEs will lead to creative new approaches—and problems—in
geometry processing, and look forward to seeing how interactions
between geometry, rendering, and stochastic calculus can continue
to fortify this effort.

ACKNOWLEDGMENTS
The authors thank Mark Gillespie, Ioannis Gkioulekas, and Rasmus
Tamstorf for fruitful conversations, Ruihao Ye for support on closest
point queries, and Timothy Sun for some early explorations of these
ideas. The hemisus guineensis mesh (Fig. 18) is used courtesy of the
Blackburn Lab, under a CreativeCommons BY 4.0 license. This work
was supported by a Packard Fellowship, NSF awards 1717320 and
1943123, and gifts from Autodesk, Adobe, Disney, and Facebook.
The second author was also supported by NSF award DMS-1439786
and Sloan award G-2019-11406 while in residence at ICERM.

REFERENCES
S. Alanko and M. Avellaneda. 2013. Reducing variance in the numerical solution of

BSDEs. Comptes Rendus Mathematique 351, 3-4 (2013), 135–138.
J. Arvo. 2001. Stratified sampling of 2-manifolds. SIGGRAPH Course Notes 29, 2 (2001).
M. Attene, M. Campen, and L. Kobbelt. 2013. Polygon mesh repairing: An application

perspective. ACM Computing Surveys (CSUR) 45, 2 (2013), 15.
S. Axler, P. Bourdon, and R. Wade. 2013. Harmonic function theory. Vol. 137. Springer

Science & Business Media.
G. Barill, N. G Dickson, R. Schmidt, D. Levin, and A. Jacobson. 2018. Fast winding

numbers for soups and clouds. ACM Trans. Graph. 37, 4 (2018), 1–12.

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

123:16 • Sawhney and Crane

D. Bell. 2012. The Malliavin Calculus. Courier Corporation.
G. Bernstein and D. Fussell. 2009. Fast, exact, linear booleans. In Computer Graphics

Forum, Vol. 28. Wiley Online Library, 1269–1278.
H. Bhatia, G. Norgard, V. Pascucci, and P. Bremer. 2013. The Helmholtz-Hodge

Decomposition—A Survey. IEEE Trans. Viz. Comp. Graph. 19, 08 (2013).
H. Bhatia, V. Pascucci, and P. Bremer. 2014. The Natural Helmholtz-Hodge Decom-

position for Open-boundary Flow Analysis. IEEE Trans. Viz. Comp. Graph. 20, 11
(2014).

I. Binder and M. Braverman. 2012. The rate of convergence of the Walk on Spheres
Algorithm. Geometric and Functional Analysis 22, 3 (01 Jun 2012), 558–587. https:
//doi.org/10.1007/s00039-012-0161-z

D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. 2013. Quad-
mesh generation and processing: A survey. In Computer Graphics Forum, Vol. 32.
Wiley Online Library, 51–76.

T. Booth. 1981. Exact Monte Carlo solution of elliptic partial differential equations. J.
Comput. Phys. 39, 2 (1981), 396–404.

M. Bossy, N. Champagnat, H. Leman, S. Maire, L. Violeau, and M. Yvinec. 2015. Monte
Carlo Methods for Linear and Non-linear Poisson-Boltzmann Equation. ESAIM:
Proceedings and Surveys 48 (2015), 420–446.

R. Bridson. 2007. Fast Poisson Disk Sampling in Arbitrary Dimensions. In SIGGRAPH
sketches. 22.

X. Chen, Y. Zhou, Z. Shu, H. Su, and J. Paul. 2007. Improved Algebraic Algorithm on
Point projection for B´ eziercurves. In Second International Multi-Symposiums on
Computer and Computational Sciences (IMSCCS 2007). IEEE, 158–163.

M. Chuang and M. Kazhdan. 2011. Interactive and anisotropic geometry processing
using the screened Poisson equation. ACM Trans. Graph. 30, 4 (2011), 57.

M. Costabel. 1986. Principles of Boundary Element Methods. Techn. Hochsch., Fachbere-
ich Mathematik.

Y. Le Coz and R. Iverson. 1992. A stochastic algorithm for high speed capacitance
extraction in integrated circuits. Solid-State Electronics 35, 7 (1992), 1005 – 1012.

K. Crane, C. Weischedel, and M. Wardetzky. 2017. The Heat Method for Distance
Computation. Commun. ACM 60, 11 (Oct. 2017), 90–99.

M. Deaconu and A. Lejay. 2006. A RandomWalk on Rectangles Algorithm. Methodology
and Computing in Applied Probability 8, 1 (12 May 2006), 135. https://doi.org/10.
1007/s11009-006-7292-3

P. Debevec. 2002. Image-based Lighting. IEEE Computer Graphics and Applications 22,
2 (2002), 26–34.

J. Delaurentis and L. Romero. 1990. A Monte Carlo method for Poisson’s equation. J.
Comput. Phys. 90, 1 (1990), 123 – 140.

O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and P. Prusinkiewicz. 1998.
Realistic Modeling and Rendering of Plant Ecosystems. In Proceedings of the 25th
annual conference on Computer graphics and interactive techniques. ACM, 275–286.

L. Devroye. 1986. Sample-based non-uniform random variate generation. In Proceedings
of the 18th conference on Winter simulation. ACM, 260–265.

P. Dutre, P. Bekaert, and K. Bala. 2006. Advanced global illumination. AK Peters/CRC
Press.

E. Dyllong and W. Luther. 2000. Distance Calculation Between a Point and a NURBS
Surface. Technical Report. Duisburg University.

G. Dziuk. 1988. Finite elements for the Beltrami operator on arbitrary surfaces. In
Partial differential equations and calculus of variations. Springer, 142–155.

B. Elepov and G. Mikhailov. 1969. Solution of the Dirichlet Problem for the Equation
∆u − cu = −q by a Model of “Walks on Spheres”. U. S. S. R. Comput. Math. and
Math. Phys. 9, 3 (1969), 194–204.

I. Georgiev, T. Ize, M. Farnsworth, R. Montoya-Vozmediano, A. King, B. Lommel, A.
Jimenez, O. Anson, S. Ogaki, E. Johnston, A. Herubel, D. Russell, F. Servant, and M.
Fajardo. 2018. Arnold: A Brute-Force Production Path Tracer. ACM Trans. Graph.
37, 3, Article 32 (Aug. 2018), 12 pages.

R. Gershbein, P. Schröder, and P. Hanrahan. 1994. Textures and radiosity: Controlling
emission and reflectionwith texturemaps. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques. ACM, 51–58.

J. Given, J. Hubbard, and J. Douglas. 1997. A first-passage algorithm for the hydrody-
namic friction and diffusion-limited reaction rate of macromolecules. The Journal
of chemical physics 106, 9 (1997), 3761–3771.

D. Givoli, L. Rivkin, and J. Keller. 1992. A finite element method for domains with
corners. International journal for numerical methods in engineering 35, 6 (1992).

C. Goral, K. Torrance, D. Greenberg, and B. Battaile. 1984. Modeling the interaction of
light between diffuse surfaces. In ACM SIGGRAPH computer graphics, Vol. 18. ACM.

J. Hart. 1996. Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of
Implicit Surfaces. The Visual Computer 12, 10 (1996), 527–545.

Stefan Heinrich. 2001. Multilevel Monte Carlo Methods. In International Conference on
Large-Scale Scientific Computing. Springer, 58–67.

D. Higham. 2001. An algorithmic introduction to numerical simulation of stochastic
differential equations. SIAM review 43, 3 (2001), 525–546.

Y. Hu, T. Schneider, X. Gao, Q. Zhou, A. Jacobson, D. Zorin, and D. Panozzo. 2019.
TriWild: Robust Triangulation with Curve Constraints. ACM Trans. Graph. 38, 4
(2019), 52.

Y. Hu, T. Schneider, B. Wang, D. Zorin, and D. Panozzo. 2020. Fast Tetrahedral Meshing
in the Wild. ACM Trans. Graph. 39, 4 (2020).

Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo. 2018. Tetrahedral
Meshing in the Wild. ACM Trans. Graph. 37, 4 (2018), 60–1.

C. Hwang, J. Given, and M. Mascagni. 2000. On the rapid estimation of permeability
for porous media using Brownian motion paths. Physics of Fluids 12, 7 (2000),
1699–1709.

C. Hwang and M. Mascagni. 2004. Electrical capacitance of the unit cube. Journal of
applied physics 95, 7 (2004), 3798–3802.

S. Idelsohn, E. Onate, N. Calvo, and F. Del Pin. 2003. The meshless finite element
method. Internat. J. Numer. Methods Engrg. 58, 6 (2003), 893–912.

Intel. 2019. Open Image Denoise. https://openimagedenoise.github.io/.
A. Jacobson, I. Baran, J. Popovic, and O. Sorkine. 2011. Bounded biharmonic weights

for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78.
A. Jacobson, L. Kavan, and O. Sorkine-Hornung. 2013. Robust Inside-Outside Segmen-

tation using Generalized Winding Numbers. ACM Trans. Graph. 32, 4 (2013).
W. Jakob. 2010. Mitsuba Renderer. http://www.mitsuba-renderer.org.
J. Kajiya. 1986. The Rendering Equation. In ACM SIGGRAPH computer graphics, Vol. 20.

ACM, 143–150.
S. Kakutani. 1944. Two-dimensional Brownian Motion and Harmonic Functions. Pro-

ceedings of the Imperial Academy 20, 10 (1944), 706–714.
N. Kalantari, S. Bako, and P. Sen. 2015. A Machine Learning Approach for Filtering

Monte Carlo Noise. ACM Trans. Graph. 34, 4 (2015), 122–1.
M. Kazhdan, M. Bolitho, and H. Hoppe. 2006. Poisson Surface Reconstruction. In

Proceedings of the fourth Eurographics symposium on Geometry processing, Vol. 7.
P. Kloeden and E. Platen. 2013. Numerical Solution of Stochastic Differential Equations.

Vol. 23. Springer Science & Business Media.
F. Knöppel, K. Crane, U. Pinkall, and P. Schröder. 2013. Globally optimal direction fields.

ACM Trans. Graph. 32, 4 (2013).
F. Knöppel, K. Crane, U. Pinkall, and P. Schröder. 2015. Stripe Patterns on Surfaces.

ACM Trans. Graph. 34, 4 (2015).
D. Kopta, T. Ize, J. Spjut, E. Brunvand, A. Davis, and A. Kensler. 2012. Fast, effective

BVH updates for animated scenes. In Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games. ACM, 197–204.

N. Koshlyakov, M. Smirnov, and E. Gliner. 1964. Differential Equations of Mathematical
Physics. (1964).

E. Lafortune and Y. Willems. 1993. Bi-Directional Path Tracing. Compugraphics
(December 1993), 145–153.

J. Lawrence, S. Rusinkiewicz, and R. Ramamoorthi. 2004. Efficient BRDF importance
sampling using a factored representation. In ACM Trans. Graph., Vol. 23. ACM.

S. Li and W. Liu. 2007. Meshfree Particle Methods. Springer Publishing Company,
Incorporated.

Y. Lipman, R. Rustamov, and T. Funkhouser. 2010. Biharmonic Distance. ACM Trans.
Graph. 29, 3 (June 2010).

S. Maire and E. Tanré. 2013. Monte Carlo approximations of the Neumann problem.
Monte Carlo Methods and Applications 19, 3 (2013), 201–236.

M. Mascagni and C. Hwang. 2003. ϵ -Shell error analysis for “Walk On Spheres” algo-
rithms. Mathematics and computers in simulation 63, 2 (2003), 93–104.

M. Mascagni and N. Simonov. 2004. Monte Carlo Methods for Calculating some Physical
Properties of Large Molecules. SIAM journal on scientific computing 26, 1 (2004).

M. Meyer, M. Desbrun, P. Schröder, and A. Barr. 2003. Discrete differential-geometry op-
erators for triangulated 2-manifolds. In Visualization and mathematics III. Springer.

D. Mirzaei. 2015. Analysis of moving least squares approximation revisited. J. Comput.
Appl. Math. 282 (2015), 237–250.

M. Muller. 1956. Some Continuous Monte Carlo Methods for the Dirichlet Problem.
Ann. Math. Statist. 27, 3 (09 1956), 569–589.

A. Nealen. 2004. An As-Short-as-Possible Intro to Moving Least Squares. (2004).
http://www.nealen.com/projects/mls/asapmls.pdf

N. Newton. 1994. Variance reduction for simulated diffusions. SIAM journal on applied
mathematics 54, 6 (1994), 1780–1805.

B. Øksendal. 2003. Stochastic Differential Equations. In Stochastic differential equations.
Springer, 65–84.

A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and D. Salesin. 2008.
Diffusion curves: a vector representation for smooth-shaded images. In ACM Trans.
Graph., Vol. 27. ACM, 92.

A. Pajot, L. Barthe, and M. Paulin. 2011. Sample-Space Bright-Spot Removal Using
Density Estimation (regular paper). In Graphics Interface (GI 2011), St John’s, New
Found Land (Canada), 25/05/11-27/05/11. A K Peters, 159–166.

S. Papanicolopulos and A. Zervos. 2013. Polynomial C1 shape functions on the triangle.
Computers & Structures 118 (2013), 53–58.

E. Pardoux and S. Tang. 1999. Forward-backward stochastic differential equations and
quasilinear parabolic PDEs. Probability Theory and Related Fields 114, 2 (1999).

S. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M.
McGuire, K. Morley, A. Robison, et al. 2010. OptiX: a general purpose ray tracing
engine. In ACM Trans. Graph., Vol. 29. ACM, 66.

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

https://doi.org/10.1007/s00039-012-0161-z
https://doi.org/10.1007/s00039-012-0161-z
https://doi.org/10.1007/s11009-006-7292-3
https://doi.org/10.1007/s11009-006-7292-3
http://www.nealen.com/projects/mls/asapmls.pdf

Monte Carlo Geometry Processing • 123:17

D. Pavić, M. Campen, and L. Kobbelt. 2010. Hybrid booleans. In Computer Graphics
Forum, Vol. 29. Wiley Online Library, 75–87.

J. Peters and U. Reif. 2008. Subdivision Surfaces. Springer Berlin Heidelberg, Berlin,
Heidelberg, 57–81. https://doi.org/10.1007/978-3-540-76406-9_4

M. Pharr, W. Jakob, and G. Humphreys. 2016. Physically based rendering: From theory
to implementation. Morgan Kaufmann.

A. Requicha and H. Voelcker. 1977. Constructive solid geometry. (1977).
P. Ribeiro, H. de Campos Velho, and H. Lopes. 2016. Helmholtz-Hodge Decomposition

and the Analysis of 2D Vector Field Ensembles. Comput. Graph. 55, C (April 2016),
17.

S. Roth. 1982. Ray casting for modeling solids. Computer graphics and image processing
18, 2 (1982), 109–144.

F. Rousselle, M. Manzi, and M. Zwicker. 2013. Robust denoising using feature and color
information. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 121–130.

B. Schäling. 2014. The boost C++ libraries. XML Press.
T. Schneider, Y. Hu, J. Dumas, X. Gao, D. Panozzo, and D. Zorin. 2019. Decoupling

Simulation Accuracy from Mesh Quality. ACM Trans. Graph. 37, 6 (2019), 280.
S. Sellán, H. Cheng, Y. Ma, M. Dembowski, and A. Jacobson. 2019. Solid Geometry

Processing on Deconstructed Domains. In Computer Graphics Forum, Vol. 38. Wiley
Online Library, 564–579.

K. Shakenov. 2014. The Solution of the Initial Mixed Boundary Value Problem for
Hyperbolic Equations by Monte Carlo and Probability Difference Methods. In
Fourier Analysis. Springer, 349–355.

E. Shellshear and R. Ytterlid. 2014. Fast Distance Queries for Triangles Lines Points
using SSE Instructions. Journal of Computer Graphics Techniques Vol 3, 4 (2014).

C. Shen, J. O’Brien, and J. Shewchuk. 2005. Interpolating and Approximating Implicit
Surfaces from Polygon Soup. In ACM Siggraph 2005 Courses. ACM, 204.

J. Snyder and A. Barr. 1987. Ray Tracing Complex Models Containing Surface Tes-
sellations. In Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’87). ACM, New York, NY, USA, 119–128.

O. Stein, E. Grinspun, A. Jacobson, and M. Wardetzky. 2019. A mixed finite element
method with piecewise linear elements for the biharmonic equation on surfaces.
arXiv:1911.08029 [math.NA]

O. Stein, E. Grinspun, M. Wardetzky, and A. Jacobson. 2018. Natural Boundary Condi-
tions for Smoothing in Geometry Processing. ACM Trans. Graph. 37, 2, Article 23
(May 2018), 13 pages. https://doi.org/10.1145/3186564

J. Sun, M. Ovsjanikov, and L. Guibas. 2009. A concise and provably informative multi-
scale signature based on heat diffusion. In Computer graphics forum, Vol. 28. Wiley
Online Library, 1383–1392.

T. Sun, P. Thamjaroenporn, and C. Zheng. 2014. Fast multipole representation of
diffusion curves and points. ACM Trans. Graph. 33, 4 (2014), 53–1.

R. Sutton and A. Barto. 2018. Reinforcement Learning: An Introduction. MIT press.
Y. Tong, S. Lombeyda, A. Hirani, and M. Desbrun. 2003. Discrete Multiscale Vector

Field Decomposition. ACM Trans. Graph. 22, 3 (July 2003), 445–452.
T. Ullrich, V. Settgast, U. Krispel, C. Fünfzig, and D. Fellner. 2007. Distance Calculation

between a Point and a Subdivision Surface. In Vision, Modeling, and Visualization
2007. Proceedings. Max Planck Institut für Informatik, Saarbrücken, 161–169.

A. Vaxman, M. Campen, O. Diamanti, D. Panozzo, D. Bommes, K. Hildebrandt, and M.
Ben-Chen. 2016. Directional Field Synthesis, Design, and Processing. Computer
Graphics Forum (2016).

E. Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
Dissertation. Stanford University.

E. Veach and L. Guibas. 1995a. Bidirectional estimators for light transport. In Photore-
alistic Rendering Techniques. Springer, 145–167.

E. Veach and L. Guibas. 1995b. Optimally combining sampling techniques for Monte
Carlo rendering. In Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques. ACM, 419–428.

R. Viertel and B. Osting. 2017. An Approach to Quad Meshing Based on Harmonic
Cross-Valued Maps and the Ginzburg-Landau Theory. SIAM Journal on Scientific
Computing 41 (08 2017).

P. Virtanen, R. Gommers, and Contributors. 2019. SciPy 1.0–Fundamental Algorithms
for Scientific Computing in Python. arXiv e-prints, Article arXiv:1907.10121 (Jul
2019), arXiv:1907.10121 pages. arXiv:1907.10121

I. Wald, W. Usher, N. Morrical, L. Lediaev, and V. Pascucci. 2019. RTX Beyond Ray
Tracing: Exploring the Use of Hardware Ray Tracing Cores for Tet-Mesh Point
Location. Proceedings of High Performance Graphics (2019).

I. Wald, S. Woop, C. Benthin, G. Johnson, and M. Ernst. 2014. Embree: a kernel frame-
work for efficient CPU ray tracing. ACM Trans. Graph. 33, 4 (2014), 143.

H. Wann Jensen. 2001. State of the Art in Monte Carlo Ray Tracing for Realistic Image
Synthesis. In SIGGRAPH Course Notes.

G. Ward and P. Heckbert. 1992. Irradiance gradients. Technical Report. Lawrence
Berkeley Lab., CA (United States); Ecole Polytechnique Federale

G. Ward, F. Rubinstein, and R. Clear. 1988. A ray tracing solution for diffuse interreflec-
tion. ACM SIGGRAPH Computer Graphics 22, 4 (1988), 85–92.

R. Ytterlid and E. Shellshear. 2015. BVH split strategies for fast distance queries. Journal
of Computer Graphics Techniques (JCGT) 4 (2015), 1–25.

Fig. 28. To importance sample Poisson and screened Poisson equations we
need to sample from distributions that depend only on the radius r (here
shown for 2D, and for several values of the screening parameter c). Although
the Green’s functions G have singularities at r = 0 (left), the associated
radial distributions rG are nonsingular due to a change in measure (right).

Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, H. Shum, and H. Shum. 2004. Mesh Editing
with Poisson-based Gradient Field Manipulation. In ACM Trans. Graph., Vol. 23.
ACM, 644–651.

R. Zhao, M. Desbrun, G. Wei, and Y. Tong. 2019. 3D Hodge Decompositions of Edge-
and Face-based Vector Fields. ACM Trans. Graph. 38, 5 (2019).

Q. Zhou, E. Grinspun, D. Zorin, and A. Jacobson. 2016. Mesh arrangements for solid
geometry. ACM Trans. Graph. 35, 4 (2016), 1–15.

Q. Zhou and A. Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models.
arXiv preprint arXiv:1605.04797 (2016).

Q. Zhu, L. Hernquist, and Y. Li. 2015. Numerical convergence in smoothed particle
hydrodynamics. The Astrophysical Journal 800, 1 (2015), 6.

M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle, P. Sen, C.
Soler, and S. Yoon. 2015. Recent Advances in Adaptive Sampling and Reconstruction
for Monte Carlo Rendering. Computer Graphics Forum (Proceedings of Eurographics
- State of the Art Reports) 34, 2 (May 2015), 667–681.

A INTEGRAL FORMULAS FOR DERIVATIVES
A.0.1 Gradient of Boundary Term. The
mean value property from Eqn. 4 can be
restated by saying that the value of u at
any point x is equal to its average value
over the interior of any ball B(x) ⊂ Ω, i.e.,
u(x) = 1

|B(x) |

∫
B(x) u(y) dy. If we move the

ball in some direction Z , the change in u is
therefore given by

⟨∇u(x),Z ⟩ =
1

|B(x)|

∫
∂B(x)

⟨Z ,ν (y)⟩u(y) dy,

where ν is the outward unit normal of ∂B(x). Intuitively: if we shift
the ball slightly, we pick up a contribution in the “front” and lose a
contribution in the “back,” both proportional to the magnitude of u.
Since this relationship holds for all Z , and since ν = (y−x)/|y−x | =
(y − x)/R, we obtain the expression from Eqn. 12.

This expression can also be derived using the framework ofMalli-
avin calculus [Bell 2012], which instead approaches the derivation
from the viewpoint of deviations of stochastic processes (in par-
ticular, Wiener processes). We used this machinery to derive the
boundary Hessian term appearing in Sec. 3.3.

B SAMPLING DISTRIBUTIONS
We here give the Green’s functions needed to estimate solution
values and derivatives for the PDEs in Sec. 2. Since these PDEs are
isotropic, their Green’s functions can be expressed purely in terms
of the distance r := |y − x | from the center of the ball B(x) (see
Fig. 28). Derivations can be found in Koshlyakov et al. [1964].

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

https://doi.org/10.1007/978-3-540-76406-9_4
https://arxiv.org/abs/1911.08029
https://doi.org/10.1145/3186564
https://arxiv.org/abs/1907.10121

123:18 • Sawhney and Crane

To sample from the probability distribution pG := G/
∫
B G asso-

ciated with a Green’s function G, we first pick a unit direction ŷ
uniformly on the unit sphere [Arvo 2001], then sample the radius
from a distribution proportional to rG in 2D, or r2 sinθ in 3D, where
θ is the polar angle of ŷ in spherical coordinates. The extra factor
in front ofG accounts for the change of measure between polar and
Cartesian coordinates, and eliminates the singularity at r = 0 (see
Fig. 28). The final sample point is then y = rŷ. When uniformly sam-
pling the source contribution (as in Sec. 2.3), or when importance
sampling source terms (Sec. 4.2.2), samples of G near r = 0 could
perhaps cause “bright spots” [Pajot et al. 2011], though in practice
we do not observe such behavior.

B.1 Harmonic Green’s Function
For a ball B of radius R, we use G to denote the harmonic Green’s
function of the Laplace operator on B, with Dirichlet boundary
conditions. In two and three dimensions, we have

G2D (x ,y) = 1
2π log(R/r), G3D (x ,y) = 1

4π
(R−r)
rR ,

resp., where r = |y − x |. The integrals of these functions over the
ball (needed to obtain the associated probability distributions pG)
are given by∫

B(x)G
2D(x ,y) dy = R2

4 ,
∫
B(x)G

3D(x ,y) dy = R2

6 ,

and their gradients with respect to x are given by

∇G2D (x ,y) =
y−x
2π

(
1
r 2 −

1
R2

)
, ∇G3D (x ,y) =

y−x
4π

(
1
r 3 −

1
R3

)
.

B.2 Yukawa Potential
The Green’s function Gc for a screened Poisson equation depends
on the parameter c appearing in Eqn. 9. It is given by the so-called
Yukawa potentials [Elepov and Mikhailov 1969]

G2D
c (x ,y) = 1

2π

(
K0(r

√
c) − I0(r

√
c)

K0(R
√
c)

I0(R
√
c)

)
,

G3D
c (x ,y) = 1

4π

(
sinh((R−r)

√
c)

r sinh(R
√
c)

)
,

which have integrals∫
B(x)G

2D
c (x ,y) dy = 1

c (1 −
1

I0(R
√
c)
),∫

B(x)G
3D
c (x ,y) dy = 1

c (1 −
R
√
c

sinh(R
√
c)
),

and gradients

∇G2D
c (x ,y) =

(y−x)
√
c

2π

(
K1(r

√
c)

r −
K1(R

√
c)

R
I0(r

√
c)

I0(R
√
c)
+

K0(R
√
c)

I0(R
√
c)

(
I1(r

√
c)

r −
I1(R

√
c)

R
I0(r

√
c)

I0(R
√
c)

))
,

∇G3D
c (x ,y) =

y−x
4π

(√
c cosh((R−r)

√
c)

r sinh(R
√
c)

(
1
r − 1

R

)
+

sinh((R−r)
√
c)

r sinh(R
√
c)

(
1
r 2 +

√
c cosh(R

√
c)

R sinh(R
√
c)

))
.

The functions I0, I1 and K0, K1 are modified Bessel functions of the
first and second kind respectively. Routines to efficiently evaluate
these functions are commonly available in numerical libraries such
as Boost [Schäling 2014] and SciPy [Virtanen et al. 2019].

B.2.1 Normalization Constants. The estimator for the screened
Poisson equation is the same as for the ordinary Poisson equation,
except that the term ûf (xk1) in Eqn. 8 is multiplied by the factors

C2D :=
1

I0(R
√
c)

and C3D :=
R
√
c

sinh(R
√
c)
,

in 2D and 3D (resp.), where c is the constant from Eqn. 9. See for
instance Booth [1981, Equation 13].

B.2.2 Terms for Hessian Estimator. In two and three dimensions, the
functionsψ and ϕ associated with the harmonic Green’s functions
for a ball of radius R are given by

ψ 2D(x ,y) = 1
2π

2
R4 , ϕ2D(x ,y) = 1

2π
r 2−R2

R4 ,

ψ 3D(x ,y) = 1
4π

3
R5 , ϕ3D(x ,y) = 1

4π
r 2−R2

R5 ,

resp., where r = |y − x |.

Received January 2020

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.

	Abstract
	1 Introduction
	1.1 Contributions

	2 PDE Estimators
	2.1 Background and Notation
	2.2 Laplace Equation
	2.3 Poisson Equation
	2.4 Screened Poisson Equation
	2.5 Biharmonic Equation
	2.6 Exterior Problems

	3 Derivative Estimators
	3.1 Gradient
	3.2 First-Order Differential Operators
	3.3 Higher Order Derivatives

	4 Variance Reduction
	4.1 Control Variates
	4.2 Importance Sampling
	4.3 Nested Equations

	5 Solver Framework
	5.1 Boundary Representations
	5.2 Visualization

	6 Evaluation and Geometric Algorithms
	6.1 Stopping Tolerance
	6.2 Comparison to Finite Elements
	6.3 Convergence
	6.4 Diffusion Curves and Surfaces
	6.5 Symmetric Direction Fields
	6.6 Helmholtz Decomposition
	6.7 Shape Deformation

	7 Related Work
	7.1 Discretization Error
	7.2 Approximation Error
	7.3 Boundary Representations
	7.4 Robustness
	7.5 Performance and Scalability

	8 Limitations and Future Work
	Acknowledgments
	References
	A Integral Formulas for Derivatives
	B Sampling Distributions
	B.1 Harmonic Green's Function
	B.2 Yukawa Potential

