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Abstract

In this undergraduate research project report, a fast sampling based algorithm and 
surface reconstruction strategy is presented to compute the medial transform of 2D and 
3D geometrical shapes. In addition, a method to isolate the junction points of the 2D 
medial axis is provided and iterative approaches to surface sampling in 3D are 
discussed.

Introduction

The medial axis of an object is the set of all points having more than one closest point 
on the object's boundary. Mathematically, it is defined as the locus of all centers of 
circles inside the 2D polygon (or spheres inside a 3D object) that are tangent to the 
boundary in two or more places. Since its introduction by Blum [1] as a means to 
describe shapes in biology and medicine, the medial axis has become an important tool 
in computational geometry and geometric modeling. 

Shape skeletonization (i.e., medial axis extraction) is a powerful technique in many 
visual computing applications, such as pattern recognition, object segmentation, 
registration, and animation [2][3]. This is because as a local lower-dimensional 
characterization of a solid, the medial axis provides a compact representation of solid 
models that preserves topological properties. The medial axis also has several other 
unique advantages in modeling geometric objects. First, it provides localization of 
features such as anatomical landmarks (which are extremely valuable in bio-medical 



applications). Second, it separates thickness information (e.g., radius of medial axis) 
from orientational and topological information, i.e., shape features can be subdivided 
into radial, orientational and location information in order to facilitate statistical analysis. 
Third, it allows for shape differences between objects to be quantified in a more intuitive 
and accurate way. Fourth, as it is often more expeditious to capture only the coarse-
scale changes of acquired models, a simplified or pruned medial axis serves as a more 
stable and robust representation of noisy datasets.

In addition to skeletonization, surface reconstruction is becoming increasingly important 
in geometric modeling for generating surfaces from data points captured from real 
objects, often by laser range scanners but also by hand held digitizers, computer vision 
techniques, edge detection from medical images, or other technologies. Industrial 
applications include reverse engineering, product design and the construction of 
personalized medical appliances [2][3]. The medial axis together with the associated 
radius function of the maximally inscribed discs (or spheres), from now referred to as 
maximal balls, is called the medial axis transform (MAT). The MAT serves as a complete 
shape descriptor, meaning that it can be used to reconstruct the shape of the original 
domain.

However, to date work on the MAT has been limited by the difficulty inherent in 
developing accurate and efficient algorithms to compute it, especially for 3-D objects. 
The primary drawback of the medial axis is that it is very sensitive to minor 
perturbations of the object’s boundary, such as that caused by discretization, 
segmentation errors, image noise and so forth. The goal of most medial axis pruning 
techniques thus is to remove the branches associated with these artifacts, resulting 
typically in much cleaner and more usable medial axis as mentioned previously. The de-
noised axis can be used to reconstruct a smoother version of the original object [10].

Figure 1: 2D illustration of Medial Axis



Relevant Work

The usefulness of the MAT has inspired many methods for its computation. In most 
cases, the algorithm operates on a discrete approximation of the object, such as a set of 
sample boundary points, and outputs a polygonal approximation of the medial axis. At a 
broad level, algorithms for medial-axis computation can be classified into the following  
categories: thinning algorithms, distance field algorithms, algebraic tracing methods, 
and surface-sampling approaches. These categories differ in terms of the underlying 
representations used for the medial axis as well as how they compute it.

Thinning Algorithms

Thinning algorithms use a voxel-based representation of the initial figure, and perform 
erosion operations to arrive at a set of voxels approximating the medial axis. Careful 
erosion of the object's voxels is performed layer by layer while preserving the object's 
topological and geometrical properties, i.e, a voxel is removed if and only if its removal 
does not induce a local change in topology (e.g. breaking the object in two parts, 
creating a hole or cavity). These methods are significant in the areas of image 
processing and pattern recognition, since the input data is represented as a discrete 
grid. However, being fundamentally discrete processes, thinning methods require fully 
segmented, compact, and connected objects and have difficulties dealing with partial 
data. They are also sensitive to Euclidean transformations of the data. 

Many algorithms based on partial differential equations of front propagation have also 
been proposed. Du et al. [4] employ a diffusion-based PDE to allow 3D objects to 
progressively propagate their boundaries inward using a finite differences and 
approximate simplified skeletons with user interactions. The distance information from 
skeletal points to the boundaries are recorded for reconstruction and deformation 
purposes. However, in addition to being sensitive to the value of time intervals for the 
diffusion process, such algorithms are also slow for large datasets as they require 
checking for collisions between sampling points and faces.

Distance Field Algorithms 

Because the skeletal or medial surface points usually coincides with the singularities of 
a Euclidean distance function to the boundary, distance functions can be employed for 
medial axis extraction. The approaches based on distance functions construct distance 
field transformation of an object and extract the medial axis based on the distance field. 
Danielsson [5] uses a scanning approach to create an image in which each pixel 
contains the Euclidean distance to the nearest pixel on the boundary of the figure being 
analyzed. Moreover, the resulting distance map can be analyzed for local directional 
maxima to get an approximation of the medial axis. Such methods however have 
difficulty in ensuring homotopy with original objects.



Algebraic Methods

There is a family of methods that rely fundamentally on the fact that the algebraic form 
is explicitly known for each surface patch of the medial axis of a polyhedron. Most 
algorithms that represent the medial axis symbolically use a tracing approach. Starting 
from a junction point on the medial axis, a seam emanating from the junction is 
followed. The seam terminates at another junction and the process is applied 
recursively. Using such an approach, Arinyo et al. [6] give an algorithm for computing 
the medial axis of a planar region bounded by piecewise C2 curves. Culver et al. [7] 
have demonstrated tracing algorithms for polyhedra, all using different methods to find 
the endpoints of the seam curves. Culver et al. represent the medial axis exactly by 
means of systems of algebraic equations manipulated using rational arithmetic. Their 
method computes an exact representation of the medial axis provided there are no 
degeneracies (such as more than four seams intersecting at a point). All of the methods 
in this family have been applied to polyhedra composed of only a few hundred faces. It 
is not clear whether they can be applied to complex models composed of tens or 
hundreds of thousands of faces. Either their running time is more than O(n^2), where n 
is the number of faces, or these algorithms are susceptible to accuracy and robustness 
problems.

Surface Sampling Approaches

Surface sampling methods represent the initial figure as a dense cloud of sample points 
presumed to be on or near the boundary. The medial axis of the figure is approximated 
by a subset of the Voronoi diagram of the point cloud. Different algorithms based on this 
approach use different methods for selecting the desired subset of the Voronoi diagram. 
Many such variations have been proposed. Boissonnat [8] classified certain triangles of 
the Delaunay tetrahedralization of the point cloud as interior to the model; the Voronoi 
vertices dual to those tetrahedra approximate the medial axis. Using a similar approach, 
Amenta et al. [9] construct an approximate, simplified medial axis which they use as a 
stage in a surface reconstruction from the original point cloud, a common application for 
this approach. These algorithms have been applied to models composed of tens of 
thousands of points. 

Figure 2: MAT computation for a convex polygon using path tracing, Arinyo et al. 



One of the issues when applying these algorithms to polyhedral models is in generating 
appropriate point samples on the boundary to ensure a tight approximation of the 
medial axis. In general, the worst-case running time of these algorithms can be O(n^2), 
where n is the number of point samples. The main problem though with such an 
approach is that unlike in 2D, the Voronoi vertices (circumcentres of the tetrahedra) in 
3D do not converge to the medial axis as the sampling density approaches infinity 
[Amenta et al. 2001b]. Therefore, regardless of sampling density, there are many 
tetrahedra that are not even close to the medial axis that are being used for enforcing 
topological constraints. This can often hinder the regularization process.

Experiments and Observations 

Figure 3 outlines a fast sampling based algorithm to compute the medial axis of 2D and 
3D objects. For every randomly chosen point P on a mesh, a point Q that lies at 
intersection of the mesh and the ray along the inward normal to the face of P is 
computed. P and Q are then used to compute the maximal ball inside the mesh whose 
center lies on the segment PQ.

A binary search based approach as listed in Figure 4 is used to determine the center 
and radius of the maximal ball. Given a ball fixed at the original value of point P in 
computeMedialPoint, it is shrunk if it is not entirely contained inside the mesh  (Q is 
set to the midPoint of P and Q) and grown otherwise (P is set to the midPoint of P and 
Q) till the distance between P and Q becomes negligible. The point P and Q converge to 
a point on the medial axis. The radius of the maximal ball centered at this point is kept 
track of for surface reconstruction.



The complexity of the algorithm is O (N F log( ||Q - P|| / EPSILON )), where N is the 
number of samples and F is the number of faces in the mesh. However, if the mesh 
functions getIntersection and containsBall are implemented with an acceleration 
structure such as the Bounding Volume Hierarchy (BVH), the runtime cost reduces to 
O(N log (F) log (||Q - P|| / EPSILON )). The medial axis of various 2D and 3D shapes 
and their reconstructions are illustrated below.



Timings (in seconds) with BVH

Isolating Junction Points of the Medial Axis in 2D

In Figure 5, Arinyo et al. [6] note that the medial discs that define the medial axis are 
tangent only to edges and concave vertices in the boundary. They refer to the edges 
and concave vertices in the domain boundary as the active boundary elements and 
governors as the subset of active boundary elements to which a maximal inscribed disc 
centered on a medial axis point is tangent. Points on the medial axis are classified 
based on the number of governors that define them.

Junction point: Point where the maximal disc is tangent to 3 or more governors.

End point: Convex vertex of the polygon where the radius of the medial axis point is 
zero. Also the point where the medial axis intersects with the boundary.

Regular point: Point where the maximal disc is tangent to 2 governors. Points in the 
medial axis that are neither junction points nor end points are regular points.

Transition point: Medial axis regular point where one of both governors changes.

Figure 5 highlights that the junction and end points alone provide a reduced 
representation of the medial axis itself. These points provide the least amount of 

Samples / 3D Model Stanford Bunny 
(626994 Triangles)

Stanford Dragon 
(900000 Triangles)

Stanford Buddha
(900000 Triangles)

500 30 - 35 10 - 12 12 - 15

1000 68 - 73 21 - 23 27 - 30

5000 370 - 400 100 - 110 130 - 150

Arinyo et al. [6]



information required to completely specify the 2D boundary. The radius of all the 
maximal balls between adjacent junction - junction or junction - end paris can be 
determined based on the radius of the points in such a pair.

Additionally, Figure 6 shows that the paths between junction - junction or junction - end 
pairs can be either linear or parabolic. Given a concave vertex and an edge as in Figure 
6 b), it can be demonstrated that the medial path is indeed parabolic in the vicinity of 
such a configuration by setting the distance from X to A equal to the distance from X to 
B in Figure 7 and solving from y in terms of x. 

With any three points on the medial path in Figure 7, the parabolic shape of the medial 
path can be determined by solving three linear equations to compute the coefficients of 
the parabolic function. Assuming two of these three points are junction points J and J’, 
the third point can be found by sampling along the projection of the line JJ’ on the 
boundary and computing the medial point as in Figure 4. 

Figure 8 modifies computeMedialAxis to isolate the junction and end points of the 
medial axis. computeMedialJunctionPoints assumes that the boundary edges are in 
either clock wise or anti clockwise order. It then samples a percentage of the total 
sample points weighted by edge lengths on each edge. As seen in Figure 1, 
computeEffectiveNormal sums the normals of all governors for a medialPoint and 
assigns the net normal vector to it (Figure 10 b). If the effective normals of two adjacent 
medial points do not point in the same direction, then the junction point known to exist 
between these two medial points is computed. Otherwise, the two medial points lie on 
the same linear medial path. Note in the case where the effective normal sums to zero, 
the norma l o f any one governor i s ass igned to the med ia l po in t . 
computeMedialJunctionPoints also appends the convex vertices of the boundary to 

Figure 6: path s of medial paths based on governors

Figure 7: parabolic shape of 
medial path

Arinyo et al. [6]





its list of junction points (Figure 10 c).  

computeJunctionPoint in Figure 9 uses a binary search approach to compute the 
junction point between two regular medial points. It picks the midpoint of the line 
segment PQ and finds its closest governor (by using BVH). It then checks if the effective 
normals of the newly computed medial point returned from computeMedialPoint lies in 
the same direction as those of P or Q. Based on the result, it updates either P or Q to 
the midpoint. The point P and Q converge to a junction point of the medial axis. 

The algorithm in Figure 8 and 9 reduces the ordering on the boundary edges to the list 
of junction points, thereby providing a way to connect adjacent junction points (Figure 
10 d). It can be extended to account for parabolic medial paths by detecting concave 
vertices along the boundary.

Iterative Sampling Strategies

Establishing connectivity between medial axis points in 3D is difficult because there 
does not exist any obvious scheme to sample the surface of a 3D mesh in order as in 
2D. Therefore, sampling strategies need to be devised to avoid oversampling the 
boundary. Two relatively simple iterative strategies are presented to do so. 

1) Closest neighbor: For each medial point P, the medial point Q closest to it is found 
such that the point does not already have a neighbor and the maximal balls of these 
two points do not overlap. These conditions provide a linear ordering on the medial 
points. The line segment PQ is then inserted into a max heap sorted by the length of 
line segments. Points are sampled recursively along the projection of the segment 
PQ (returned from the heap) on the boundary to compute a new medial point M until 
the maximal balls of P and M or Q and M do not overlap.

2) Closest medial point to mesh face: Having identified a set of governors (that are 
faces) for a set of medial axis points, the distance for each of the remaining faces on 
the boundary to the medial point closest to them is determined. Face medial point 
pairs are inserted in a max heap sorted by the distance between the face and the 
medial point closest to it. The faces of the entries returned from the heap are then 
sampled. Heap entries containing faces whose distance to the newly computed 
medial point is smaller than the previously computed distance are discarded. 

Both these strategies have one major drawback: they do not sample in regions of the 
boundary that lack initial samples.
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Future Directions

1) Through an extension of the scheme provided in the section Isolating Junction 
Points of the Medial Axis in 2D, the junction and end points of 3D shapes can also 
be determined. In 3D, the governors of medial points would consist of various 
possible combinations of faces, edges and concave points resulting in planar, 
parabolic and hyperbolic medial paths [6]. However, imposing an ordering and thus  
connecting junction and end points is a difficult problem as there does not exist any 
notion of an ordered traversal of the surface of a 3D shape. Therefore, further work 
needs to be done on establishing connectivity between junction - junction and 
junction - end pairs of the medial axis in 3D.

2) Sampling: Smarter sampling strategies for both 2D and 3D shapes need to be 
developed to avoid oversampling the boundary.

3) Simplification: The primary drawback of the medial axis is that it is very sensitive to 
minor perturbations of the object’s boundary, such as that caused by discretization, 
segmentation errors, image noise and so forth. To further extend algorithm 
developed, the next logical step would be to develop pruning techniques to remove 
noisy branches of the resulting medial axis.

4) Implementing Papers: Arinyo et al. [6] provide a tracing algorithm in 2D similar to the 
one outlined in this report and claim that it is possible to extend their algorithm to 
3D. It would be a worthwhile exercise to implement this paper to develop further 
insights into medial axis computations. Implementing and improving on Du et al. [4]s 
PDE based approach is another direction worth exploring given the work on 
adaptive simulation being done by the Columbia Computer Graphics Group. 
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